On almost equitable uninorms
Kybernetika, Tome 51 (2015) no. 4, pp. 699-711
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Uninorms, as binary operations on the unit interval, have been widely applied in information aggregation. The class of almost equitable uninorms appears when the contradictory information is aggregated. It is proved that among various uninorms of which either underlying t-norm or t-conorm is continuous, only the representable uninorms belong to the class of almost equitable uninorms. As a byproduct, a characterization for the class of representable uninorms is obtained.
Uninorms, as binary operations on the unit interval, have been widely applied in information aggregation. The class of almost equitable uninorms appears when the contradictory information is aggregated. It is proved that among various uninorms of which either underlying t-norm or t-conorm is continuous, only the representable uninorms belong to the class of almost equitable uninorms. As a byproduct, a characterization for the class of representable uninorms is obtained.
DOI : 10.14736/kyb-2015-4-0699
Classification : 03B52, 03E72, 06F05
Keywords: uninorm; representable uninorm; aggregation functions; negation; contradictory information
@article{10_14736_kyb_2015_4_0699,
     author = {Li, Gang and Liu, Hua-Wen and Fodor, J\'anos},
     title = {On almost equitable uninorms},
     journal = {Kybernetika},
     pages = {699--711},
     year = {2015},
     volume = {51},
     number = {4},
     doi = {10.14736/kyb-2015-4-0699},
     mrnumber = {3423195},
     zbl = {06530339},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-4-0699/}
}
TY  - JOUR
AU  - Li, Gang
AU  - Liu, Hua-Wen
AU  - Fodor, János
TI  - On almost equitable uninorms
JO  - Kybernetika
PY  - 2015
SP  - 699
EP  - 711
VL  - 51
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-4-0699/
DO  - 10.14736/kyb-2015-4-0699
LA  - en
ID  - 10_14736_kyb_2015_4_0699
ER  - 
%0 Journal Article
%A Li, Gang
%A Liu, Hua-Wen
%A Fodor, János
%T On almost equitable uninorms
%J Kybernetika
%D 2015
%P 699-711
%V 51
%N 4
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-4-0699/
%R 10.14736/kyb-2015-4-0699
%G en
%F 10_14736_kyb_2015_4_0699
Li, Gang; Liu, Hua-Wen; Fodor, János. On almost equitable uninorms. Kybernetika, Tome 51 (2015) no. 4, pp. 699-711. doi: 10.14736/kyb-2015-4-0699

[1] Bustince, H., Montero, J., Mesiar, R.: Migrativity of aggregation functions. Fuzzy Sets Syst. 160 (2009), 766-777. | DOI | MR | Zbl

[2] Baets, B. De: Idempotent uninorms. Eur. J. Oper. Res. 118 (1998), 631-642. | DOI | Zbl

[3] Baets, B. De, Fodor, J.: Residual operators of uninorms. Soft Comput. 3 (1999), 89-100. | DOI

[4] Baets, B.De, Fodor, J.: Van Melle's combining function in MYCIN is a representable uninorm: An alternative proof. Fuzzy Sets Syst. 104 (1999), 133-136. | DOI | MR | Zbl

[5] Baets, B. De, Kwasnikowska, N., Kerre, E.: Fuzzy morphology based on uninorms. In: Seventh IFSA World Congress, Prague 1997, pp. 215-220.

[6] Hliněná, D., Kalina, M., Král', P.: A class of implications related to Yager's $f-$implications. Information Sciences 260 (2014), 171-184. | DOI | MR

[7] Drygaś, P.: Discussion of the structure of uninorms. Kybernetika 41 (2005), 213-226. | MR | Zbl

[8] Drygaś, P.: On the structure of continuous uninorms. Kybernetika 43 (2007), 183-196. | MR | Zbl

[9] Drygaś, P.: On properties of uninorms with underlying t-norm and t-conorm given as ordinal sums. Fuzzy Sets Syst. 161 (2010), 149-157. | DOI | MR | Zbl

[10] Drygaś, P., Ruiz-Aguilera, D., Torrens, J.: A characterization of uninorms locally internal in $A(e)$ with continuous underlying operators. Fuzzy Sets Syst. (submitted).

[11] Fodor, J., Roubens, M.: Fuzzy Preference Modelling and Multicriteria Decision Support. Kluwer Academic Publishers, Dordrecht 1994. | DOI | Zbl

[12] Fodor, J., Yager, R. R., Rybalov, A.: Structure of uninorms. Int. J. Uncertainty, Fuzziness, Knowledge-Based Syst. 5 (1997), 411-427. | DOI | MR | Zbl

[13] Fodor, J., Baets, B. De: A single-point characterization of representable uninorms. Fuzzy Sets Syst. 202 (2012), 89-99. | DOI | MR | Zbl

[14] Gabbay, D. M., Metcalfe, G.: Fuzzy logics based on $[0,1)$-continuous uninorms. Arch. Math. Log. 46 (2007), 425-449. | DOI | MR | Zbl

[15] Li, G., Liu, H.-W.: Distributivity and conditional distributivity of a uninorm with continuous underlying operators over a continuous t-conorm. Fuzzy Sets and Systems (2015). | DOI

[16] Li, G., Liu, H.-W., Fodor, J.: Single-point characterization of uninorms with nilpotent underlying t-norm and t-conorm. Int. J. Uncertainty, Fuzziness, Knowledge-Based Syst. 22 (2014), 591-604. | DOI | MR

[17] Hu, S., Li, Z.: The structure of continuous uninorms. Fuzzy Sets Syst. 124 (2001), 43-52. | DOI | MR

[18] Mas, M., Monserrat, M., Ruiz-Aguilera, D., Torrens, J.: Migrative uninorms and nullnorms over t-norms and t-conorms. Fuzzy Sets and Syst. 261 (2015), 20-32. | DOI | MR

[19] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000. | DOI | MR | Zbl

[20] Petrík, M., Mesiar, R.: On the structure of special classes of uninorms. Fuzzy Sets Syst. 240 (2014), 22-38. | DOI | MR | Zbl

[21] Pradera, A.: Uninorms and non-contradiction. In: Lecture Notes in Computer Sciences, vol. 5285, (V. Torra and Y. Narukawa, eds.), Springer 2008, pp. 50-61. | DOI | Zbl

[22] Pradera, A., Trillas, E.: Aggregation, non-contradiction and excluded-middle. Mathware Soft Comput. XIII (2006), 189-201. | MR | Zbl

[23] Pradera, A., Trillas, E.: Aggregation operators from the ancient NC and EM point of view. Kybernetika 42 (2006), 243-260. | MR | Zbl

[24] Pradera, A., Beliakov, G., Bustince, H.: Aggregation functions and contradictory information. Fuzzy Sets Syst. 191 (2012), 41-61. | DOI | MR | Zbl

[25] Qin, F., Zhao, B.: The distributive equations for idempotent uninorms and nullnorms. Fuzzy Sets Syst. 155 (2005), 446-458. | DOI | MR | Zbl

[26] Ruiz, D., Torrens, J.: Distributivity and conditional distributivity of a uninorm and a continuous t-conorm. IEEE Trans. Fuzzy Syst. 14 (2006), 180-190. | DOI

[27] Ruiz-Aguilera, D., Torrens, J., Baets, B. De, Fodor, J. C.: Some remarks on the characterization of idempotent uninorms. In: IPMU 2010, LNAI 6178 (E. Hüllermeier, R. Kruse and F. Hoffmann, eds.), Springer-Verlag, Berlin - Heidelberg 2010, pp. 425-434. | DOI

[28] Ruiz-Aguilera, D., Torrens, J.: S- and R-implications from uninorms continuous in $]0,1[^{2}$ and their distributivity over uninorms. Fuzzy Sets Syst. 160 (2009), 832-852. | DOI | MR | Zbl

[29] Xie, A., Liu, H.: On the distributivity of uninorms over nullnorms. Fuzzy Sets Syst. 211 (2013), 62-72. | DOI | MR | Zbl

[30] Yager, R., Rybalov, A.: Uninorm aggregation operators. Fuzzy Sets Syst. 80 (1996), 111-120. | DOI | MR | Zbl

[31] Yager, R., Rybalov, A.: Bipolar aggregation using the Uninorms. Fuzzy Optim. Decis. Making 10 (2011), 59-70. | DOI | MR | Zbl

[32] Yager, R.: Uninorms in fuzzy systems modeling. Fuzzy Sets Syst. 122 (2001), 167-175. | DOI | MR | Zbl

Cité par Sources :