Keywords: uninorm; representable uninorm; aggregation functions; negation; contradictory information
@article{10_14736_kyb_2015_4_0699,
author = {Li, Gang and Liu, Hua-Wen and Fodor, J\'anos},
title = {On almost equitable uninorms},
journal = {Kybernetika},
pages = {699--711},
year = {2015},
volume = {51},
number = {4},
doi = {10.14736/kyb-2015-4-0699},
mrnumber = {3423195},
zbl = {06530339},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-4-0699/}
}
Li, Gang; Liu, Hua-Wen; Fodor, János. On almost equitable uninorms. Kybernetika, Tome 51 (2015) no. 4, pp. 699-711. doi: 10.14736/kyb-2015-4-0699
[1] Bustince, H., Montero, J., Mesiar, R.: Migrativity of aggregation functions. Fuzzy Sets Syst. 160 (2009), 766-777. | DOI | MR | Zbl
[2] Baets, B. De: Idempotent uninorms. Eur. J. Oper. Res. 118 (1998), 631-642. | DOI | Zbl
[3] Baets, B. De, Fodor, J.: Residual operators of uninorms. Soft Comput. 3 (1999), 89-100. | DOI
[4] Baets, B.De, Fodor, J.: Van Melle's combining function in MYCIN is a representable uninorm: An alternative proof. Fuzzy Sets Syst. 104 (1999), 133-136. | DOI | MR | Zbl
[5] Baets, B. De, Kwasnikowska, N., Kerre, E.: Fuzzy morphology based on uninorms. In: Seventh IFSA World Congress, Prague 1997, pp. 215-220.
[6] Hliněná, D., Kalina, M., Král', P.: A class of implications related to Yager's $f-$implications. Information Sciences 260 (2014), 171-184. | DOI | MR
[7] Drygaś, P.: Discussion of the structure of uninorms. Kybernetika 41 (2005), 213-226. | MR | Zbl
[8] Drygaś, P.: On the structure of continuous uninorms. Kybernetika 43 (2007), 183-196. | MR | Zbl
[9] Drygaś, P.: On properties of uninorms with underlying t-norm and t-conorm given as ordinal sums. Fuzzy Sets Syst. 161 (2010), 149-157. | DOI | MR | Zbl
[10] Drygaś, P., Ruiz-Aguilera, D., Torrens, J.: A characterization of uninorms locally internal in $A(e)$ with continuous underlying operators. Fuzzy Sets Syst. (submitted).
[11] Fodor, J., Roubens, M.: Fuzzy Preference Modelling and Multicriteria Decision Support. Kluwer Academic Publishers, Dordrecht 1994. | DOI | Zbl
[12] Fodor, J., Yager, R. R., Rybalov, A.: Structure of uninorms. Int. J. Uncertainty, Fuzziness, Knowledge-Based Syst. 5 (1997), 411-427. | DOI | MR | Zbl
[13] Fodor, J., Baets, B. De: A single-point characterization of representable uninorms. Fuzzy Sets Syst. 202 (2012), 89-99. | DOI | MR | Zbl
[14] Gabbay, D. M., Metcalfe, G.: Fuzzy logics based on $[0,1)$-continuous uninorms. Arch. Math. Log. 46 (2007), 425-449. | DOI | MR | Zbl
[15] Li, G., Liu, H.-W.: Distributivity and conditional distributivity of a uninorm with continuous underlying operators over a continuous t-conorm. Fuzzy Sets and Systems (2015). | DOI
[16] Li, G., Liu, H.-W., Fodor, J.: Single-point characterization of uninorms with nilpotent underlying t-norm and t-conorm. Int. J. Uncertainty, Fuzziness, Knowledge-Based Syst. 22 (2014), 591-604. | DOI | MR
[17] Hu, S., Li, Z.: The structure of continuous uninorms. Fuzzy Sets Syst. 124 (2001), 43-52. | DOI | MR
[18] Mas, M., Monserrat, M., Ruiz-Aguilera, D., Torrens, J.: Migrative uninorms and nullnorms over t-norms and t-conorms. Fuzzy Sets and Syst. 261 (2015), 20-32. | DOI | MR
[19] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000. | DOI | MR | Zbl
[20] Petrík, M., Mesiar, R.: On the structure of special classes of uninorms. Fuzzy Sets Syst. 240 (2014), 22-38. | DOI | MR | Zbl
[21] Pradera, A.: Uninorms and non-contradiction. In: Lecture Notes in Computer Sciences, vol. 5285, (V. Torra and Y. Narukawa, eds.), Springer 2008, pp. 50-61. | DOI | Zbl
[22] Pradera, A., Trillas, E.: Aggregation, non-contradiction and excluded-middle. Mathware Soft Comput. XIII (2006), 189-201. | MR | Zbl
[23] Pradera, A., Trillas, E.: Aggregation operators from the ancient NC and EM point of view. Kybernetika 42 (2006), 243-260. | MR | Zbl
[24] Pradera, A., Beliakov, G., Bustince, H.: Aggregation functions and contradictory information. Fuzzy Sets Syst. 191 (2012), 41-61. | DOI | MR | Zbl
[25] Qin, F., Zhao, B.: The distributive equations for idempotent uninorms and nullnorms. Fuzzy Sets Syst. 155 (2005), 446-458. | DOI | MR | Zbl
[26] Ruiz, D., Torrens, J.: Distributivity and conditional distributivity of a uninorm and a continuous t-conorm. IEEE Trans. Fuzzy Syst. 14 (2006), 180-190. | DOI
[27] Ruiz-Aguilera, D., Torrens, J., Baets, B. De, Fodor, J. C.: Some remarks on the characterization of idempotent uninorms. In: IPMU 2010, LNAI 6178 (E. Hüllermeier, R. Kruse and F. Hoffmann, eds.), Springer-Verlag, Berlin - Heidelberg 2010, pp. 425-434. | DOI
[28] Ruiz-Aguilera, D., Torrens, J.: S- and R-implications from uninorms continuous in $]0,1[^{2}$ and their distributivity over uninorms. Fuzzy Sets Syst. 160 (2009), 832-852. | DOI | MR | Zbl
[29] Xie, A., Liu, H.: On the distributivity of uninorms over nullnorms. Fuzzy Sets Syst. 211 (2013), 62-72. | DOI | MR | Zbl
[30] Yager, R., Rybalov, A.: Uninorm aggregation operators. Fuzzy Sets Syst. 80 (1996), 111-120. | DOI | MR | Zbl
[31] Yager, R., Rybalov, A.: Bipolar aggregation using the Uninorms. Fuzzy Optim. Decis. Making 10 (2011), 59-70. | DOI | MR | Zbl
[32] Yager, R.: Uninorms in fuzzy systems modeling. Fuzzy Sets Syst. 122 (2001), 167-175. | DOI | MR | Zbl
Cité par Sources :