Semi-t-operators on a finite totally ordered set
Kybernetika, Tome 51 (2015) no. 4, pp. 667-677
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Recently, Drygaś generalized nullnorms and t-operators and introduced semi-t-operators by eliminating commutativity from the axiom of t-operators. This paper is devoted to the study of the discrete counterpart of semi-t-operators on a finite totally ordered set. A characterization of semi-t-operators on a finite totally ordered set is given. Moreover, The relations among nullnorms, t-operators, semi-t-operators and pseudo-t-operators (i. e., commutative semi-t-operators) on a finite totally ordered set are shown.
Recently, Drygaś generalized nullnorms and t-operators and introduced semi-t-operators by eliminating commutativity from the axiom of t-operators. This paper is devoted to the study of the discrete counterpart of semi-t-operators on a finite totally ordered set. A characterization of semi-t-operators on a finite totally ordered set is given. Moreover, The relations among nullnorms, t-operators, semi-t-operators and pseudo-t-operators (i. e., commutative semi-t-operators) on a finite totally ordered set are shown.
DOI : 10.14736/kyb-2015-4-0667
Classification : 03E72
Keywords: fuzzy connectives; finite chain; t-operator; semi-t-operator; pseudo-t-operator
@article{10_14736_kyb_2015_4_0667,
     author = {Su, Yong and Liu, Hua-Wen},
     title = {Semi-t-operators on a finite totally ordered set},
     journal = {Kybernetika},
     pages = {667--677},
     year = {2015},
     volume = {51},
     number = {4},
     doi = {10.14736/kyb-2015-4-0667},
     mrnumber = {3423193},
     zbl = {06530337},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-4-0667/}
}
TY  - JOUR
AU  - Su, Yong
AU  - Liu, Hua-Wen
TI  - Semi-t-operators on a finite totally ordered set
JO  - Kybernetika
PY  - 2015
SP  - 667
EP  - 677
VL  - 51
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-4-0667/
DO  - 10.14736/kyb-2015-4-0667
LA  - en
ID  - 10_14736_kyb_2015_4_0667
ER  - 
%0 Journal Article
%A Su, Yong
%A Liu, Hua-Wen
%T Semi-t-operators on a finite totally ordered set
%J Kybernetika
%D 2015
%P 667-677
%V 51
%N 4
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-4-0667/
%R 10.14736/kyb-2015-4-0667
%G en
%F 10_14736_kyb_2015_4_0667
Su, Yong; Liu, Hua-Wen. Semi-t-operators on a finite totally ordered set. Kybernetika, Tome 51 (2015) no. 4, pp. 667-677. doi: 10.14736/kyb-2015-4-0667

[1] Baets, B. De, Mesiar, R.: Triangular norms on product lattices. Fuzzy Sets and Systems 104 (1999), 61-75. | DOI | MR | Zbl

[2] Baets, B. De, Fodor, J., Ruiz-Aguilera, D., Torrens, J.: Idempotent uninorms on finite ordinal scales. Int. J. Uncertainty, Fuzziness and Knowledge-Based Systems 17 (2009), 1-14. | DOI | MR | Zbl

[3] Calvo, T., Baets, B. De, Fodor, J.: The functional equations of Frank and Alsina for uninorms and nullnorms. Fuzzy Sets and Systems 120 (2001), 385-394. | DOI | MR | Zbl

[4] Drygaś, P.: Distributivity between semi-t-operators and semi-nullnorms. Fuzzy Sets and Systems 264 2015, 100-109. | DOI | MR

[5] Fodor, J.: Smooth associative operations on finite ordinal scales. IEEE Trans. on Fuzzy Systems 8 (2000), 6, 791-795. | DOI

[6] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publ., Dordrecht 2000. | DOI | MR | Zbl

[7] Kolesarova, A., Mayor, G., Mesiar, R.: Weighted ordinal means. Information Sciences 177 (2007), 3822-3830. | DOI | MR | Zbl

[8] Li, G., Liu, H-w., Fodor, J.: On weakly smooth uninorms on finite chain. Int. J. Intelligent Systems 30 (201), 421-440. | DOI

[9] Mas, M., Mayor, G., Torrens, J.: t-operators and uninorms on a Finite totally ordered set. Int. J. Intelligent Systems 14 (1999), 909-922. | DOI | MR | Zbl

[10] Mas, M., Mayor, G., Torrens, J.: t-operators. Int. J. Uncertainty, Fuzziness and Knowledge-Based Systems 7 (1999), 31-50. | DOI | MR | Zbl

[11] Mas, M., Mayor, G., Torrens, J.: The distributivity condition for uninorms and t-operators. Fuzzy Sets and Systems 128 (2002), 209-225. | DOI | MR | Zbl

[12] Mayor, G., Torrens, J.: On a class of operators for expert systems. Int. J. Intelligent Systems 8 (1993), 771-778. | DOI | Zbl

[13] Mayor, G., Torrens, J.: Triangular Norms on Discrete Settings. In: Logical, Algebraic, Analytic, and Probabilistic Aspects of Triangular Norms (E. P. Klement and R. Mesiar, eds.), Elsevier, Amsterdam (2005). | MR | Zbl

[14] Riera, J. V., Torrens, J.: Uninorms and nullnorms on the set of discrete fuzzy numbers. In: EUSFLAT Conf. 2011, pp. 59-66. | DOI | Zbl

[15] Ruiz-Aguilera, D., Torrens, J.: A characterization of discrete uninorms having smooth underlying operators. Fuzzy Sets and Systems 268 (2015), 44-58. | DOI | MR

[16] Torrens, J.: Estudi de models matemktics per a connectius en logica multivaluada. Ph.D. Thesis, Palma de Mallorca Universitat de les IIIes Balears, 1990.

[17] Trillas, E., Alsina, C.: Logic: going father from Tarski?. Fuzzy Sets and Systems 5 (1993), 3, 1-13. | DOI | MR

Cité par Sources :