Finite-time adaptive outer synchronization between two complex dynamical networks with nonidentical topological structures
Kybernetika, Tome 51 (2015) no. 4, pp. 655-666
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we investigate the finite-time adaptive outer synchronization between two complex dynamical networks with nonidentical topological structures. We propose new adaptive controllers, with which we can synchronize two complex dynamical networks within finite time. Sufficient conditions for the finite-time adaptive outer synchronization are derived based on the finite-time stability theory. Finally, numerical examples are examined to demonstrate the effectiveness and feasibility of the theoretical results.
In this paper, we investigate the finite-time adaptive outer synchronization between two complex dynamical networks with nonidentical topological structures. We propose new adaptive controllers, with which we can synchronize two complex dynamical networks within finite time. Sufficient conditions for the finite-time adaptive outer synchronization are derived based on the finite-time stability theory. Finally, numerical examples are examined to demonstrate the effectiveness and feasibility of the theoretical results.
DOI : 10.14736/kyb-2015-4-0655
Classification : 05C82, 34D06
Keywords: complex networks; outer synchronization; finite-time; adaptive feedback controllers
@article{10_14736_kyb_2015_4_0655,
     author = {Wu, Jie and Sun, Yong-zheng and Zhao, Dong-hua},
     title = {Finite-time adaptive outer synchronization between two complex dynamical networks with nonidentical topological structures},
     journal = {Kybernetika},
     pages = {655--666},
     year = {2015},
     volume = {51},
     number = {4},
     doi = {10.14736/kyb-2015-4-0655},
     mrnumber = {3423192},
     zbl = {06530336},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-4-0655/}
}
TY  - JOUR
AU  - Wu, Jie
AU  - Sun, Yong-zheng
AU  - Zhao, Dong-hua
TI  - Finite-time adaptive outer synchronization between two complex dynamical networks with nonidentical topological structures
JO  - Kybernetika
PY  - 2015
SP  - 655
EP  - 666
VL  - 51
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-4-0655/
DO  - 10.14736/kyb-2015-4-0655
LA  - en
ID  - 10_14736_kyb_2015_4_0655
ER  - 
%0 Journal Article
%A Wu, Jie
%A Sun, Yong-zheng
%A Zhao, Dong-hua
%T Finite-time adaptive outer synchronization between two complex dynamical networks with nonidentical topological structures
%J Kybernetika
%D 2015
%P 655-666
%V 51
%N 4
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-4-0655/
%R 10.14736/kyb-2015-4-0655
%G en
%F 10_14736_kyb_2015_4_0655
Wu, Jie; Sun, Yong-zheng; Zhao, Dong-hua. Finite-time adaptive outer synchronization between two complex dynamical networks with nonidentical topological structures. Kybernetika, Tome 51 (2015) no. 4, pp. 655-666. doi: 10.14736/kyb-2015-4-0655

[1] An, X. L., Zhang, L., Li, Y. Z., Zhang, J. G.: Synchronization analysis of complex networks with multi-weights and its application in public traffic network. Physica A: Statist. Mech. Appl. 412 (2014), 149-156. | DOI | MR

[2] Aghababa, M. P., Aghababa, H. P.: A general nonlinear adaptive control scheme for finite-time synchronization of chaotic systems with uncertain parameters and nonlinear inputs. Nonlinear Dyn. 69 (2012), 1903-1914. | DOI | MR | Zbl

[3] Aghababa, M. P., Aghababa, H. P.: Adaptive finite-time synchronization of non-autonomous chaotic systems with uncertainty. J. Comput. Nonlin. Dyn. 8 (2013), 031006. | DOI

[4] Chen, D. Y., Zhang, R. F., Liu, X. Z., Ma, X. Y.: Fractional order Lyapunov stability theorem and its applications in synchronization of complex dynamical networks. Commun. Nonlinear Sci. Numer. Simul. 19 (2014), 4105-4121. | DOI | MR

[5] Dimassi, H., Loría, A., Belghith, S.: A new secured transmission scheme based on chaotic synchronization via smooth adaptive unknown-input observers. Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 3727-3739. | DOI | Zbl

[6] Genesio, R., Tesi, A.: Harmonic balance methods for the analysis of chaotic dynamics in nonlinear systems. Automatica 28 (1992), 531-548. | DOI | Zbl

[7] Guirey, E., Bees, M. A., Martin, A., Srokosz, M.: Persistence of cluster synchronization under the influence of advection. Phys. Rev. E 81 (2010), 1511-1521. | DOI | MR

[8] He, P., Ma, S. H., Fan, T.: Finite-time mixed outer synchronization of complex networks with coupling time-varying delay. Chaos 22 (2012), 043151. | DOI | MR

[9] Huberman, B. A., Adamic, L. A.: Internet-Growth dynamics of the world-wide web. Nature 401 (1999), 6749, 131. | DOI

[10] Lasalle, J. P.: The extend of asymptotic stability. Proc. Natl. Acad. Sci. USA 46 (1960), 363-365. | DOI | MR

[11] Lasalle, J. P.: Some extensions of Liapunov's second method. IRE Trans. Circuit Theory 7 (1960), 520-527. | DOI | MR

[12] Li, C. G., Chen, G. R.: Synchronization of networks with coupling delays. Phys. A: Statist. Mech. Appl. 343 (2004), 263-278. | DOI

[13] Li, C. P., Sun, W. G., Kurths, J.: Synchronization between two coupled complex networks. Phys. Rev. E 76 (2007), 046204. | DOI

[14] Liao, T. L., Huang, N. S.: An observer-based approach for chaotic synchronization with applications to secure communications. IEEE Trans. Circuits Syst. I 46 (1999), 1144-1150. | DOI | Zbl

[15] Lü, J. H., Chen, G. R.: A time-varying complex dynamical network model and its controlled synchronization criteria. IEEE Trans. Automat. Control 50 (2005), 841-846. | DOI | MR

[16] Mei, J., Jiang, M. H., Xu, W. M., Wang, B.: Finite-time synchronization control of complex dynamical networks with time delay. Commun. Nonlinear Sci. Numer. Simul. 18 (2013), 2462-2478. | DOI | MR | Zbl

[17] Revayova, M., Torok, C.: Piecewise approximation and neural networks. Kybernetika 43 (2007), 547-559. | MR | Zbl

[18] Strogatz, S. H., Stewart, I.: Coupled oscillators and biological synchronization. Sci. Am. 269 (1993), 102-109. | DOI

[19] Sun, W., Chen, Z., Kang, Y. H.: Impulsive synchronization of a nonlinear coupled complex network with a delay node. Chin. Phys. B 21 (2012), 010504. | DOI

[20] Sun, W. G., Li, S. X.: Generalized outer synchronization between two uncertain dynamical networks. Nonlinear Dyn. 77 (2014), 481-489. | DOI | MR | Zbl

[21] Sun, Y. Z., Li, W., Ruan, J.: Finite-time generalized outer synchronization between two different complex networks. Commun. Theor. Phys. 58 (2012), 697-703. | DOI | MR | Zbl

[22] Sun, Y. Z., Li, W., Ruan, J.: Generalized outer synchronization between two complex dynamical networks with time delay and noise perturbation. Commun. Nonlinear Sci. Numer. Simul. 18 (2013), 989-998. | DOI | MR

[23] Sun, Y. Z., Li, W., Zhao, D. H.: Finite-time stochastic outer synchronization between two complex dynamical networks with different topologies. Chaos 22 (2012), 023152. | DOI | MR

[24] Sun, W. G., Wu, Y. Q., Zhang, J. Y., Qin, S.: Inner and outer synchronization between two coupled networks with interactions. J. Franklin Inst. 352 (2015), 3166-3177. | DOI | MR

[25] Sun, W. G., Wang, S., Wang, G. H., Wu, Y. Q.: Lag synchronization via pinning control between two coupled networks. Nonlinear Dyn. 79 (2015), 2659-2666. | DOI | MR

[26] Tan, S. L., Lü, J. H., Yu, X. H., Hill, D. J.: Evolution and maintenance of cooperation via inheritance of neighborhood relationship. Chin. Sci. Bull. 58 (2013), 28 - 29, 3491-3498. | DOI

[27] Tan, S. L., Lü, J. H., Hill, D. J.: Towards a theoretical framework for analysis and intervention of random drift on general networks. IEEE Trans. Automat. Control 60 (2015), 2, 576-581. | DOI | MR

[28] Vincent, U. E., Guo, R.: Finite-time synchronization for a class of chaotic and hyperchaotic systems via adaptive feedback controller. Phys. Lett. A 375 (2011), 2322-2326. | DOI | MR

[29] Watts, D. J., Strogatz, S. H.: Collective dynamics of ‘small-world’ networks. Nature 393 (1998), 440-442. | DOI

[30] Wong, Y. C., Sundareshan, M. K.: A simplex trained neural network-based architecture for sensor fusion and tracking of target maneuvers. Kybernetika 35 (1999), 613-636. | MR | Zbl

[31] Wu, Z. Y., Fu, X. C.: Outer synchronization between drive-response networks with nonidentical nodes and unknown parameters. Nonlinear Dyn. 69 (2012), 685-692. | DOI | MR | Zbl

[32] Wu, Z. G., Park, J. H., Su, H. Y., Chu, J.: Discontinuous Lyapunov functional approach to synchronization of time-delay neural networks using sampled-data. Nonlinear Dyn. 69 (2012), 102-109. | DOI | MR | Zbl

[33] Wu, Z. Y., Ye, Q. L., Liu, D. F.: Finite-time synchronization of dynamical networks coupled with complex-variable chaotic systems. Int. J. Mod. Phys. C 24 (2013), 1350058. | DOI | MR

[34] Yang, X. S., Cao, J. D., Lu, J. Q.: Synchronization of delayed complex dynamical networks with impulsive and stochastic effects. Nonlinear Anal., Real World Appl. 12 (2011), 2252-2266. | DOI | MR | Zbl

[35] Yang, X., Wu, Z. Y., Cao, J. D.: Finite-time synchronization of complex networks with nonidentical discontinuous nodes. Nonlinear Dyn. 73 (2013), 2313-2327. | DOI | MR | Zbl

[36] Zheng, C., Cao, J. D.: Finite-time synchronization of the singular hybrid coupled networks. J. Appl. Math. 2013 (2013), 378376. | DOI | MR

[37] Zhong, W. S., Stefanovski, J. D., Dimirovski, G. M., Zhao, J.: Decentralized control and synchronization of time-varying complex dynamical network. Kybernetika 45 (2009), 151-167. | MR | Zbl

[38] Zhou, J., Lu, J. A., Lü, J. H.: Adaptive synchronization of an uncertain complex dynamical network. IEEE Trans. Automat. Control 51 (2006), 4, 652-656. | DOI | MR

[39] Zhou, J., Lu, J. A., Lü, J. H.: Pinning adaptive synchronization of a general complex dynamical network. Automatica 44 (2008), 4, 996-1003. | DOI | MR | Zbl

Cité par Sources :