Keywords: discrete-time Markov control processes; average criterion; stability index; Prokhorov metric
@article{10_14736_kyb_2015_4_0629,
author = {Mart{\'\i}nez S\'anchez, Jaime and Zaitseva, Elena},
title = {Note on stability estimation in average {Markov} control processes},
journal = {Kybernetika},
pages = {629--638},
year = {2015},
volume = {51},
number = {4},
doi = {10.14736/kyb-2015-4-0629},
mrnumber = {3423190},
zbl = {06537775},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-4-0629/}
}
TY - JOUR AU - Martínez Sánchez, Jaime AU - Zaitseva, Elena TI - Note on stability estimation in average Markov control processes JO - Kybernetika PY - 2015 SP - 629 EP - 638 VL - 51 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-4-0629/ DO - 10.14736/kyb-2015-4-0629 LA - en ID - 10_14736_kyb_2015_4_0629 ER -
%0 Journal Article %A Martínez Sánchez, Jaime %A Zaitseva, Elena %T Note on stability estimation in average Markov control processes %J Kybernetika %D 2015 %P 629-638 %V 51 %N 4 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-4-0629/ %R 10.14736/kyb-2015-4-0629 %G en %F 10_14736_kyb_2015_4_0629
Martínez Sánchez, Jaime; Zaitseva, Elena. Note on stability estimation in average Markov control processes. Kybernetika, Tome 51 (2015) no. 4, pp. 629-638. doi: 10.14736/kyb-2015-4-0629
[1] Arapostathis, A., Borkar, V. S., Fernández-Gaucherand, E., Ghosh, M. K., Marcus, S. I.: Discrete-time controlled Markov processes with average cost criterion: A survey. SIAM J. Control and Optimization 31 (1993), 282-344. | DOI | MR | Zbl
[2] Dudley, R. M.: Real Analysis and Probability. Wadsworth and Brooks/Cole, Pacific Grove 1989. | DOI | MR | Zbl
[3] Dudley, R. M.: The speed of mean Glivenko-Cantelly convergence. Ann. Math. Stat. 40 (1969), 40-50. | DOI | MR
[4] Dynkin, E. B., Yushkevich, A. A.: Controlled Markov Processes. Springer-Verlag, New York 1979. | DOI | MR
[5] Gordienko, E., Lemus-Rodríguez, E., Montes-de-Oca, R.: Average cost Markov control processes: stability with respect to the Kantorovich metric. Math. Methods Oper. Res. 70 (2009), 13-33. | DOI | MR | Zbl
[6] Gordienko, E. I.: Stability estimates for controlled Markov chains with a minorant. J. Soviet. Math. 40 (1988), 481-486. | DOI | MR | Zbl
[7] Gordienko, E. I., Yushkevich, A. A.: Stability estimates in the problem of average optimal switching of a Markov Chain. Math. Methods Oper. Res. 57 (2003), 345-365. | MR | Zbl
[8] Hernández-Lerma, O.: Adaptive Markov Control Processes. Springer-Verlag, New York 1989. | DOI | MR | Zbl
[9] Montes-de-Oca, R., Salem-Silva, F.: Estimates for perturbations of average Markov decision processes with a minimal state and upper bounded by stochastically ordered Markov chains. Kybernetika 41 (2005), 757-772. | MR | Zbl
[10] Rachev, S. T., Rüschendorf, L.: Mass Transportation Problem, Vol. II: Applications. Springer, New York 1998. | MR
[11] Vega-Amaya, O.: The average cost optimality equation: a fixed point approach. Bol. Soc. Math. Mexicana 9 (2003), 185-195. | MR | Zbl
Cité par Sources :