Keywords: characteristic function; empirical characteristic function; probability weighted moments; symmetry transformation
@article{10_14736_kyb_2015_4_0571,
author = {Meintanis, Simos G. and Stupfler, Gilles},
title = {Transformations to symmetry based on the probability weighted characteristic function},
journal = {Kybernetika},
pages = {571--587},
year = {2015},
volume = {51},
number = {4},
doi = {10.14736/kyb-2015-4-0571},
mrnumber = {3423188},
zbl = {06530334},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-4-0571/}
}
TY - JOUR AU - Meintanis, Simos G. AU - Stupfler, Gilles TI - Transformations to symmetry based on the probability weighted characteristic function JO - Kybernetika PY - 2015 SP - 571 EP - 587 VL - 51 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-4-0571/ DO - 10.14736/kyb-2015-4-0571 LA - en ID - 10_14736_kyb_2015_4_0571 ER -
%0 Journal Article %A Meintanis, Simos G. %A Stupfler, Gilles %T Transformations to symmetry based on the probability weighted characteristic function %J Kybernetika %D 2015 %P 571-587 %V 51 %N 4 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-4-0571/ %R 10.14736/kyb-2015-4-0571 %G en %F 10_14736_kyb_2015_4_0571
Meintanis, Simos G.; Stupfler, Gilles. Transformations to symmetry based on the probability weighted characteristic function. Kybernetika, Tome 51 (2015) no. 4, pp. 571-587. doi: 10.14736/kyb-2015-4-0571
[1] Bickel, P. J.: On adaptive estimation. Ann. Statist. 10 (1982), 647-671. | DOI | MR | Zbl
[2] Bickel, P. J., Doksum, K. A.: An analysis of transformations revisited. J. Amer. Statist. Assoc. 76 (1981), 296-311. | DOI | MR | Zbl
[3] Box, G. E. P., Cox, D. R.: An analysis of transformations. J. Roy. Statist. Soc. B 26 (1964), 211-243. | MR | Zbl
[4] Burbidge, J. B., Magee, L., Robb, A. L.: Alternative transformations to handle extreme values of the dependent variable. J. Amer. Statist. Assoc. 83 (1988), 123-127. | DOI | MR
[5] Chen, G., Lockhart, R., Stephens, M. A.: Box-Cox transformations in linear models: large sample theory and tests for normality (with discussion). Canad. J. Statist. 30 (2002), 1-59. | DOI | MR
[6] González-Rivera, G., Drost, F. C.: Efficiency comparisons of maximum-likelihood-based estimators in GARCH models. J. Econometr. 93 (1999), 93-111. | DOI | MR | Zbl
[7] Horowitz, J. L.: Semiparametric and Nonparametric Methods in Econometrics. Springer-Verlag, New York 2009. | DOI | MR | Zbl
[8] John, J. A., Draper, N. R.: An alternative family of transformations. J. Roy. Statist. Soc. C 29 (1980), 190-197. | DOI | Zbl
[9] Manly, B. F. J.: Exponential data transformations. J. Roy. Statist. Soc. D 25 (1976), 37-42.
[10] Meintanis, S. G., Swanepoel, J., Allison, J.: The probability weighted characteristic function and goodness-of-fit testing. J. Statist. Plann. Infer. 146 (2014), 122-132. | DOI | MR | Zbl
[11] Newey, W. K.: Adaptive estimation of regression models via moment restrictions. J. Econometr. 38 (1988), 301-339. | DOI | MR | Zbl
[12] Newey, W. K., Steigerwald, D. G.: Asymptotic bias for quasi-maximum-likelihood estimators in conditional heteroskedasticity models. Econometrica 65 (1997), 587-599. | DOI | MR | Zbl
[13] Parzen, E.: On estimation of a probability density function and mode. Ann. Math. Statist. 33 (1962), 1065-1076. | DOI | MR | Zbl
[14] Pólya, G., Szegő, G.: Problems and Theorems in Analysis, Volume I. Springer-Verlag, Berlin 1998.
[15] Rosenblatt, M.: Remarks on some nonparametric estimates of a density function. Ann. Math. Statist. 27 (1956), 832-837. | DOI | MR | Zbl
[16] Savchuk, O. Y., Schick, A.: Density estimation for power transformations. J. Nonparametr. Statist. 25 (2013), 545-559. | DOI | MR
[17] Sen, P. K.: Estimates of the regression coefficient based on Kendall's tau. J. Amer. Statist. Assoc. 63 (1968), 1379-1389. | DOI | MR | Zbl
[18] Theil, H.: A rank-invariant method of linear and polynomial regression analysis. I, II, III. Nederl. Akad. Wetensch. Proc. 53 (1950), 386-392, 521-525, 1397-1412. | MR
[19] Yeo, I.-K., Johnson, R. A.: A new family of power transformations to improve normality or symmetry. Biometrika 87 (2000), 954-959. | DOI | MR | Zbl
[20] Yeo, I.-K., Johnson, R. A.: A uniform law of large numbers for $U$-statistics with application to transforming to near symmetry. Statist. Probab. Lett. 51 (2001), 63-69. | DOI | MR
[21] Yeo, I.-K., Johnson, R. A.: An empirical characteristic function approach to selecting a transformation to symmetry. In: Contemporary Developments in Statistical Theory (S. Lahiri, A. Schick, A. SenGupta and T. Sriram, eds.), Springer International Publishing 2014, pp. 191-202. | DOI | MR
[22] Yeo, I.-K., Johnson, R. A., Deng, X. W.: An empirical characteristic function approach to selecting a transformation to normality. Commun. Stat. Appl. Methods 21 (2014), 213-224. | DOI | Zbl
Cité par Sources :