Keywords: Bayesian networks; noisy-or model; classification; generalized linear models
@article{10_14736_kyb_2015_3_0508,
author = {Vomlel, Ji\v{r}{\'\i}},
title = {Generalizations of the noisy-or model},
journal = {Kybernetika},
pages = {508--524},
year = {2015},
volume = {51},
number = {3},
doi = {10.14736/kyb-2015-3-0508},
mrnumber = {3391682},
zbl = {06487093},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-3-0508/}
}
Vomlel, Jiří. Generalizations of the noisy-or model. Kybernetika, Tome 51 (2015) no. 3, pp. 508-524. doi: 10.14736/kyb-2015-3-0508
[1] Almond, R. G., Mislevy, R. J., Steinberg, L., Yan, D., Williamson, D.: Bayesian Networks in Educational Assessment. Statistics for Social and Behavioral Sciences. Springer, New York 2015. | DOI | MR
[2] Apt{é}, Ch., Damerau, F., Weiss, S. M.: Automated learning of decision rules for text categorization. ACM Trans. Inform. Syst. 12 (1994), 3, 233-251. | DOI
[3] Byrd, R. H., Lu, P., Nocedal, J., Zhu, C.: A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Comput. 16 (1995), 1190-1208. | DOI | MR | Zbl
[4] Díez, F. J.: Parameter adjustment in Bayes networks. The generalized noisy OR gate. In: Proc. Ninth Conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann 1993, pp. 99-105. | DOI
[5] Díez, F. J., Druzdzel, M. J.: Canonical Probabilistic Models for Knowledge Engineering. Technical Report CISIAD-06-01, UNED, Madrid 2006.
[6] Díez, F. J., Galán, S. F.: An efficient factorization for the noisy MAX. Int. J. Intell. Syst. 18 (2003), 165-177. | DOI
[7] Heckerman, D., Breese, J.: A new look at causal independence. In: Proc. Tenth Conference on Uncertainty in Artificial Intelligence, Seattle, Morgan Kaufmann 1994, pp. 286-292. | DOI
[8] Henrion, M.: Practical issues in constructing a Bayes' Belief Network. In: Proc. Third Conference Annual Conference on Uncertainty in Artificial Intelligence, AUAI Press 1987, pp. 132-139.
[9] Jensen, F. V., Nielsen, T. D.: Bayesian Networks and Decision Graphs. Second edition. Springer, 2007. | DOI | MR
[10] McCullagh, P.: Regression models for ordinal data. J. Roy. Statist. Soc. Series B (Methodological) 42 (1980), 109-142. | MR | Zbl
[11] McCullagh, P., Nelder, J. A.: Generalized Linear Models. Chapman and Hall, London 1989. | DOI | MR | Zbl
[12] Miller, R. A., Fasarie, F. E., Myers, J. D.: Quick medical reference (QMR) for diagnostic assistance. Medical Comput. 3 (1986), 34-48.
[13] Neal, R. M.: Connectionist learning of belief networks. Artif. Intell. 56 (1992), 1, 71-113. | DOI | MR | Zbl
[14] Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufman, San Mateo 1988. | MR | Zbl
[15] Team, R Development Core: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna 2008.
[16] Rijmen, F.: Bayesian networks with a logistic regression model for the conditional probabilities. Int. J. Approx. Reas. 48 (2008), 2, 659-666. | DOI | MR | Zbl
[17] Samejima, F.: Estimation of Latent Ability Using a Response Pattern of Raded Scores (Psychometric Monograph No. 17). Psychometric Society, Richmond 1969.
[18] Saul, L. K., Jaakkola, T., Jordan, M. I.: Mean field theory for sigmoid belief networks. J. Artif. Intell. Res. 4 (1996), 61-76. | Zbl
[19] Savický, P., Vomlel, J.: Exploiting tensor rank-one decomposition in probabilistic inference. Kybernetika 43 (2007), 5, 747-764. | MR | Zbl
[20] Srinivas, S.: A generalization of the noisy-or model. In: Proc. Ninth Conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann 1993, pp. 208-215. | DOI
[21] Vomlel, J.: Noisy-or classifier. Int. J. Intell. Syst. 21 (2006), 381-398. | DOI | Zbl
[22] Vomlel, J.: A generalization of the noisy-or model to multivalued parent variables. In: Proc. 16th Czech-Japan Seminar on Data Analysis and Decision Making under Uncertainty 2013, pp. 19-27.
[23] Vomlel, J., Tichavský, P.: On tensor rank of conditional probability tables in Bayesian networks. A preprint arXiv:1409.6287, 2014. | MR
[24] Zagorecki, A., Druzdzel, M. J.: Knowledge engineering for Bayesian networks: How common are noisy-MAX distributions in practice?. IEEE Trans. Systems, Man, and Cybernetics: Systems 43 (2013) 186-195. | DOI
Cité par Sources :