Rationality principles for preferences on belief functions
Kybernetika, Tome 51 (2015) no. 3, pp. 486-507
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A generalized notion of lottery is considered, where the uncertainty is expressed by a belief function. Given a partial preference relation on an arbitrary set of generalized lotteries all on the same finite totally ordered set of prizes, conditions for the representability, either by a linear utility or a Choquet expected utility are provided. Both the cases of a finite and an infinite set of generalized lotteries are investigated.
A generalized notion of lottery is considered, where the uncertainty is expressed by a belief function. Given a partial preference relation on an arbitrary set of generalized lotteries all on the same finite totally ordered set of prizes, conditions for the representability, either by a linear utility or a Choquet expected utility are provided. Both the cases of a finite and an infinite set of generalized lotteries are investigated.
DOI : 10.14736/kyb-2015-3-0486
Classification : 91B06, 91B16
Keywords: generalized lottery; preference relation; belief function; linear utility; Choquet expected utility; rationality conditions
@article{10_14736_kyb_2015_3_0486,
     author = {Coletti, Giulianella and Petturiti, Davide and Vantaggi, Barbara},
     title = {Rationality principles for preferences on belief functions},
     journal = {Kybernetika},
     pages = {486--507},
     year = {2015},
     volume = {51},
     number = {3},
     doi = {10.14736/kyb-2015-3-0486},
     mrnumber = {3391681},
     zbl = {06487092},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-3-0486/}
}
TY  - JOUR
AU  - Coletti, Giulianella
AU  - Petturiti, Davide
AU  - Vantaggi, Barbara
TI  - Rationality principles for preferences on belief functions
JO  - Kybernetika
PY  - 2015
SP  - 486
EP  - 507
VL  - 51
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-3-0486/
DO  - 10.14736/kyb-2015-3-0486
LA  - en
ID  - 10_14736_kyb_2015_3_0486
ER  - 
%0 Journal Article
%A Coletti, Giulianella
%A Petturiti, Davide
%A Vantaggi, Barbara
%T Rationality principles for preferences on belief functions
%J Kybernetika
%D 2015
%P 486-507
%V 51
%N 3
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-3-0486/
%R 10.14736/kyb-2015-3-0486
%G en
%F 10_14736_kyb_2015_3_0486
Coletti, Giulianella; Petturiti, Davide; Vantaggi, Barbara. Rationality principles for preferences on belief functions. Kybernetika, Tome 51 (2015) no. 3, pp. 486-507. doi: 10.14736/kyb-2015-3-0486

[1] Chateauneuf, A.: Modeling attitudes towards uncertainty and risk through the use of Choquet integral. Ann. Oper. Res. 52 (1994), 3-20. | DOI | MR | Zbl

[2] Chateauneuf, A., Cohen, M.: Choquet expected utility model: a new approach to individual behavior under uncertainty and social choice welfare. In: Fuzzy Meas. and Int: Th. and Appl., Physica, Heidelberg 2000, pp. 289-314. | MR

[3] Choquet, G.: Theory of capacities. Ann. Inst. Fourier 5 (1954), 131-295. | DOI | MR | Zbl

[4] Coletti, G., Petturiti, D., Vantaggi, B.: Choquet expected utility representation of preferences on generalized lotteries. In: IPMU 2014 (A. Laurent et al., eds.), Part II, CCIS 443, pp. 444-453. | DOI

[5] Coletti, G., Regoli, G.: How can an expert system help in choosing the optimal decision?. Theory and Decision 33 (1992), 3, 253-264. | DOI | MR | Zbl

[6] Coletti, G., Scozzafava, R.: Toward a general theory of conditional beliefs. Int. J. Intell. Sys. 21 (2006), 229-259. | DOI | Zbl

[7] Coletti, G., Scozzafava, R., Vantaggi, B.: Inferential processes leading to possibility and necessity. Inform. Sci. 245 (2013), 132-145. | DOI | MR

[8] Dempster, A. P.: Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Statist. 38 (1967), 2, 325-339. | DOI | MR | Zbl

[9] Denneberg, D.: Non-additive Measure and Integral. Theory and Decision Library: Series B, Vol. 27. Kluwer Academic, Dordrecht, Boston 1994. | DOI | MR | Zbl

[10] Dubra, J., Maccheroni, F., Ok, E. A.: Expected utility theory without the completeness axiom. J. Econom. Theory 115 (2004), 118-133. | DOI | MR | Zbl

[11] Ellsberg, D.: Risk, ambiguity and the Savage axioms. Quart. J. Econ. 75 (1061), 643-669. | DOI | Zbl

[12] Fagin, R., Halpern, J. Y.: Uncertainty, belief and probability. Comput. Intell. 7 (1991), 3, 160-173. | DOI | Zbl

[13] Gale, D.: The Theory of Linear Economic Models. McGraw Hill 1960. | MR | Zbl

[14] Gilboa, I., Schmeidler, D.: Maxmin expected utility with non-unique prior. J. Math. Econ. 18 (1989), 2, 141-153. | DOI | MR | Zbl

[15] Gilboa, I., Schmeidler, D.: Additive representations of non-additive measures and the Choquet integral. Ann. Oper. Res. 52 (1994), 43-65. | DOI | MR | Zbl

[16] Herstein, I. N., Milnor, J.: An axiomatic approach to measurable utility. Econometrica 21 (1953), 2, 291-297. | DOI | MR | Zbl

[17] Jaffray, J. Y.: Linear utility theory for belief functions. Oper. Res. Let. 8 (1989), 2, 107-112. | DOI | MR | Zbl

[18] Cord, M. Mc, Neufville, B. de: Lottery equivalents: Reduction of the certainty effect problem in utility assessment.

[19] Miranda, E., Cooman, G. de, Couso, I.: Lower previsions induced by multi-valued mappings. J. Stat. Plan. Inf. 133 (2005), 173-197. | DOI | MR | Zbl

[20] Nau, R.: The shape of incomplete preferences. Ann. Statist. 34 (2006), 5, 2430-2448. | DOI | MR | Zbl

[21] Quiggin, J.: A theory of anticipated utility. J. Econom. Beh. Org. 3 (1982), 323-343. | DOI

[22] Savage, L.: The Foundations of Statistics. Wiley, New York 1954. | MR | Zbl

[23] Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press 1976. | MR | Zbl

[24] Schmeidler, D.: Subjective probability and expected utility without additivity. Econometrica 57 (1989), 3, 571-587. (First version: Subjective expected utility without additivity, Forder Institute Working Paper (1982)). | DOI | MR | Zbl

[25] Schmeidler, D.: Integral representation without additivity. Proc. Amer. Math. Soc. 97 (1986, 2, 255-261. | DOI | MR | Zbl

[26] Smets, P.: Decision making in the tbm: the necessity of the pignistic transformation. Int. J. Approx. Reas. 38 (2005), 2, 133-147. | DOI | MR | Zbl

[27] Troffaes, M.: Decision making under uncertainty using imprecise probabilities. Int. J. Approx. Reas. 45 (2007), 1, 17-29. | DOI | MR | Zbl

[28] Neumann, J. von, Morgenstern, O.: Theory of Games and Economic Behavior. Princeton University Press 1944. | DOI | MR

[29] Walley, P.: Statistical Reasoning with Imprecise Probabilities. Chapman and Hall, London 1991. | DOI | MR | Zbl

[30] Wakker, P.: Under stochastic dominance Choquet-expected utility and anticipated utility are identical. Theory and Decis. 29 (1990), 2, 119-132. | DOI | MR | Zbl

[31] Yaari, M.: The dual theory of choice under risk. Econometrica 55 (1987), 95-115. | DOI | MR | Zbl

Cité par Sources :