Keywords: Choquet integral; Choquet-like integral; level-dependent capacity; $\varphi $-ordinal sum of aggregation functions
@article{10_14736_kyb_2015_3_0420,
author = {Mesiar, Radko and Smrek, Peter},
title = {Choquet-like integrals with respect to level-dependent capacities and $\varphi $-ordinal sums of aggregation function},
journal = {Kybernetika},
pages = {420--432},
year = {2015},
volume = {51},
number = {3},
doi = {10.14736/kyb-2015-3-0420},
mrnumber = {3391677},
zbl = {06487088},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-3-0420/}
}
TY - JOUR AU - Mesiar, Radko AU - Smrek, Peter TI - Choquet-like integrals with respect to level-dependent capacities and $\varphi $-ordinal sums of aggregation function JO - Kybernetika PY - 2015 SP - 420 EP - 432 VL - 51 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-3-0420/ DO - 10.14736/kyb-2015-3-0420 LA - en ID - 10_14736_kyb_2015_3_0420 ER -
%0 Journal Article %A Mesiar, Radko %A Smrek, Peter %T Choquet-like integrals with respect to level-dependent capacities and $\varphi $-ordinal sums of aggregation function %J Kybernetika %D 2015 %P 420-432 %V 51 %N 3 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-3-0420/ %R 10.14736/kyb-2015-3-0420 %G en %F 10_14736_kyb_2015_3_0420
Mesiar, Radko; Smrek, Peter. Choquet-like integrals with respect to level-dependent capacities and $\varphi $-ordinal sums of aggregation function. Kybernetika, Tome 51 (2015) no. 3, pp. 420-432. doi: 10.14736/kyb-2015-3-0420
[1] Choquet, G.: Theory of capacities. Annales de l'Institite Fourier 5 (1953-1954), 131-295. | DOI | MR | Zbl
[2] Denneberg, D.: Non-additive Measure and Integral. In: Theory and Decision Library. Series B: Mathematical and Statistical Methods 27. Kluwer Academic Publishers Group, Dordrecht 1994. | DOI | MR | Zbl
[3] Grabisch, M., Marichal, J.-L., Mesiar, R., Pap, E.: Aggregation Functions. Cambridge University Press, Cambridge 2009. | DOI | MR | Zbl
[4] Greco, S., Matarazzo, B., Giove, S.: The Choquet integral with respect to a level dependent capacity. Fuzzy Sets and Systems 175 (2011), 1-35. | DOI | MR | Zbl
[5] Mesiar, R.: Choquet-like integrals. J. Math. Anal. Appl. 194 (1995), 477-488. | DOI | MR | Zbl
[6] Mesiar, R., Baets, B. De: New construction methods for aggregation operators. In: Proc. IPMU'2000, Madrid, pp. 701-706.
[7] Pap, E., ed.: Handbook of Measure Theory. Vol. I, II. North-Holland, Amsterdam 2002. | DOI | MR
[8] Pap, E.: An integral generated by a decomposable measure. Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 20 (1990), 135-144. | MR | Zbl
[9] Sander, W., Siedekum, J.: Multiplication, distributivity and fuzzy integral, I, II, III. Kybernetika 41 (2005) I: 397-422, II: 469-496, III: 497-518. | MR
[10] Schmeidler, D.: Integral representation without additivity. Proc. Amer. Math. Soc. 97 (1986), 255-261. | DOI | MR | Zbl
[11] Schmeidler, D.: Subjective probability and expected utility without additivity. Econometrica 57 (1989), 571-87. | DOI | MR | Zbl
[12] Sugeno, M.: Theory of Fuzzy Integrals and its Applications. PhD Thesis, Tokyo Institute of Technology, 1974.
[13] Sugeno, M., Murofushi, T.: Pseudo-additive measures and integrals. J. Math. Anal. Appl. 122 (1987), 197-222. | DOI | MR | Zbl
[14] Vitali, G.: Sula definizione di integrale delle funzioni di una variabile. Ann. Mat. Pura Appl. 2 (1925), 111-121. English translation: On the definition of integral of functions of one variable. Rivista di Matematica per le Scienze Sociali 20 (1997), 159-168. | DOI | MR
[15] Wang, Z., Klir, G. J.: Generalized Measure Theory. Springer, 2009. | DOI | MR | Zbl
Cité par Sources :