Choquet-like integrals with respect to level-dependent capacities and $\varphi $-ordinal sums of aggregation function
Kybernetika, Tome 51 (2015) no. 3, pp. 420-432
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this study we merge the concepts of Choquet-like integrals and the Choquet integral with respect to level dependent capacities. For finite spaces and piece-wise constant level-dependent capacities our approach can be represented as a $\varphi$-ordinal sum of Choquet-like integrals acting on subdomains of the considered scale, and thus it can be regarded as extension method. The approach is illustrated by several examples.
In this study we merge the concepts of Choquet-like integrals and the Choquet integral with respect to level dependent capacities. For finite spaces and piece-wise constant level-dependent capacities our approach can be represented as a $\varphi$-ordinal sum of Choquet-like integrals acting on subdomains of the considered scale, and thus it can be regarded as extension method. The approach is illustrated by several examples.
DOI : 10.14736/kyb-2015-3-0420
Classification : 28E05, 28E10
Keywords: Choquet integral; Choquet-like integral; level-dependent capacity; $\varphi $-ordinal sum of aggregation functions
@article{10_14736_kyb_2015_3_0420,
     author = {Mesiar, Radko and Smrek, Peter},
     title = {Choquet-like integrals with respect to level-dependent capacities and $\varphi $-ordinal sums of aggregation function},
     journal = {Kybernetika},
     pages = {420--432},
     year = {2015},
     volume = {51},
     number = {3},
     doi = {10.14736/kyb-2015-3-0420},
     mrnumber = {3391677},
     zbl = {06487088},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-3-0420/}
}
TY  - JOUR
AU  - Mesiar, Radko
AU  - Smrek, Peter
TI  - Choquet-like integrals with respect to level-dependent capacities and $\varphi $-ordinal sums of aggregation function
JO  - Kybernetika
PY  - 2015
SP  - 420
EP  - 432
VL  - 51
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-3-0420/
DO  - 10.14736/kyb-2015-3-0420
LA  - en
ID  - 10_14736_kyb_2015_3_0420
ER  - 
%0 Journal Article
%A Mesiar, Radko
%A Smrek, Peter
%T Choquet-like integrals with respect to level-dependent capacities and $\varphi $-ordinal sums of aggregation function
%J Kybernetika
%D 2015
%P 420-432
%V 51
%N 3
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-3-0420/
%R 10.14736/kyb-2015-3-0420
%G en
%F 10_14736_kyb_2015_3_0420
Mesiar, Radko; Smrek, Peter. Choquet-like integrals with respect to level-dependent capacities and $\varphi $-ordinal sums of aggregation function. Kybernetika, Tome 51 (2015) no. 3, pp. 420-432. doi: 10.14736/kyb-2015-3-0420

[1] Choquet, G.: Theory of capacities. Annales de l'Institite Fourier 5 (1953-1954), 131-295. | DOI | MR | Zbl

[2] Denneberg, D.: Non-additive Measure and Integral. In: Theory and Decision Library. Series B: Mathematical and Statistical Methods 27. Kluwer Academic Publishers Group, Dordrecht 1994. | DOI | MR | Zbl

[3] Grabisch, M., Marichal, J.-L., Mesiar, R., Pap, E.: Aggregation Functions. Cambridge University Press, Cambridge 2009. | DOI | MR | Zbl

[4] Greco, S., Matarazzo, B., Giove, S.: The Choquet integral with respect to a level dependent capacity. Fuzzy Sets and Systems 175 (2011), 1-35. | DOI | MR | Zbl

[5] Mesiar, R.: Choquet-like integrals. J. Math. Anal. Appl. 194 (1995), 477-488. | DOI | MR | Zbl

[6] Mesiar, R., Baets, B. De: New construction methods for aggregation operators. In: Proc. IPMU'2000, Madrid, pp. 701-706.

[7] Pap, E., ed.: Handbook of Measure Theory. Vol. I, II. North-Holland, Amsterdam 2002. | DOI | MR

[8] Pap, E.: An integral generated by a decomposable measure. Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 20 (1990), 135-144. | MR | Zbl

[9] Sander, W., Siedekum, J.: Multiplication, distributivity and fuzzy integral, I, II, III. Kybernetika 41 (2005) I: 397-422, II: 469-496, III: 497-518. | MR

[10] Schmeidler, D.: Integral representation without additivity. Proc. Amer. Math. Soc. 97 (1986), 255-261. | DOI | MR | Zbl

[11] Schmeidler, D.: Subjective probability and expected utility without additivity. Econometrica 57 (1989), 571-87. | DOI | MR | Zbl

[12] Sugeno, M.: Theory of Fuzzy Integrals and its Applications. PhD Thesis, Tokyo Institute of Technology, 1974.

[13] Sugeno, M., Murofushi, T.: Pseudo-additive measures and integrals. J. Math. Anal. Appl. 122 (1987), 197-222. | DOI | MR | Zbl

[14] Vitali, G.: Sula definizione di integrale delle funzioni di una variabile. Ann. Mat. Pura Appl. 2 (1925), 111-121. English translation: On the definition of integral of functions of one variable. Rivista di Matematica per le Scienze Sociali 20 (1997), 159-168. | DOI | MR

[15] Wang, Z., Klir, G. J.: Generalized Measure Theory. Springer, 2009. | DOI | MR | Zbl

Cité par Sources :