Keywords: probability measures; possibility measures; non-numerical uncertainty degrees; set-valued uncertainty degrees; possibilistic uncertainty functions; set-valued entropy functions
@article{10_14736_kyb_2015_3_0391,
author = {Kramosil, Ivan and Daniel, Milan},
title = {Several results on set-valued possibilistic distributions},
journal = {Kybernetika},
pages = {391--407},
year = {2015},
volume = {51},
number = {3},
doi = {10.14736/kyb-2015-3-0391},
mrnumber = {3391675},
zbl = {06487086},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-3-0391/}
}
TY - JOUR AU - Kramosil, Ivan AU - Daniel, Milan TI - Several results on set-valued possibilistic distributions JO - Kybernetika PY - 2015 SP - 391 EP - 407 VL - 51 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-3-0391/ DO - 10.14736/kyb-2015-3-0391 LA - en ID - 10_14736_kyb_2015_3_0391 ER -
Kramosil, Ivan; Daniel, Milan. Several results on set-valued possibilistic distributions. Kybernetika, Tome 51 (2015) no. 3, pp. 391-407. doi: 10.14736/kyb-2015-3-0391
[1] Birkhoff, G.: Lattice Theory. Third edition. Providence, Rhode Island 1967. | MR
[2] DeCooman, G.: Possibility theory I, II, III. Int. J. General Systems 25 (1997), 291-323, 325-351, 353-371. | DOI | MR
[3] Faure, R., Heurgon, E.: Structures Ordonnées et Algèbres de Boole. Gauthier-Villars, Paris 1971. | MR | Zbl
[4] Fine, T. L.: Theories of Probability. An Examination of Foundations. Academic Press, New York - London 1973. | MR | Zbl
[5] Goguen, J. A.: ${\cal L}$-fuzzy sets. J. Math. Anal. Appl. 18 (1967), 145-174. | DOI | MR
[6] Halmos, P. R.: Measure Theory. D. van Nostrand, New York 1950. | MR | Zbl
[7] Kramosil, I.: Extensions of partial lattice-valued possibilistic measures from nested domains. Int. J. Uncertain. Fuzziness and Knowledge-Based Systems 14 (2006), 175-197. | DOI | MR | Zbl
[8] Kramosil, I., Daniel, M.: Statistical estimations of lattice-valued possibilistic distributions. In: Proc. Symbolic and Quantitative Approaches to Reasoning with Uncertainty, ECSQARU 2011 (W. Liu, ed.), LNCS (LNAI) 6717, Springer-Verlag Berlin - Heidelberg 2011, pp. 688-699. | DOI | MR
[9] Kramosil, I., Daniel, M.: Possibilistic distributions processed by probabilistic algorithms. Kybernetika, submitted for publication.
[10] Shannon, C. E.: The mathematical theory of communication. The Bell Systems Technical Journal 27 (1948), 379-423, 623-656. | DOI | MR | Zbl
[11] Sikorski, R.: Boolean Algebras. Second edition. Springer, Berlin 1964. | MR
[12] Zadeh, L. A.: Fuzzy sets. Inform. Control 8 (1965), 338-353. | DOI | MR | Zbl
[13] Zadeh, L. A.: Probability measures of fuzzy events. J. Math. Anal. Appl. 23 (1968), 421-427. | DOI | MR | Zbl
[14] Zadeh, L. A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems 1 (1978), 3-28. | DOI | MR | Zbl
Cité par Sources :