On best approximation in fuzzy metric spaces
Kybernetika, Tome 51 (2015) no. 2, pp. 374-386 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we introduce the notation of t-best approximatively compact sets, t-best approximation points, t-proximinal sets, t-boundedly compact sets and t-best proximity pair in fuzzy metric spaces. The results derived in this paper are more general than the corresponding results of metric spaces, fuzzy metric spaces, fuzzy normed spaces and probabilistic metric spaces.
In this paper we introduce the notation of t-best approximatively compact sets, t-best approximation points, t-proximinal sets, t-boundedly compact sets and t-best proximity pair in fuzzy metric spaces. The results derived in this paper are more general than the corresponding results of metric spaces, fuzzy metric spaces, fuzzy normed spaces and probabilistic metric spaces.
DOI : 10.14736/kyb-2015-2-0374
Classification : 41A50, 54A40
Keywords: best approximation; topology; fuzzy metric spaces
@article{10_14736_kyb_2015_2_0374,
     author = {Abbasi, Naser and Mottaghi Golshan, Hamid},
     title = {On best approximation in fuzzy metric spaces},
     journal = {Kybernetika},
     pages = {374--386},
     year = {2015},
     volume = {51},
     number = {2},
     doi = {10.14736/kyb-2015-2-0374},
     mrnumber = {3350568},
     zbl = {06487085},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-2-0374/}
}
TY  - JOUR
AU  - Abbasi, Naser
AU  - Mottaghi Golshan, Hamid
TI  - On best approximation in fuzzy metric spaces
JO  - Kybernetika
PY  - 2015
SP  - 374
EP  - 386
VL  - 51
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-2-0374/
DO  - 10.14736/kyb-2015-2-0374
LA  - en
ID  - 10_14736_kyb_2015_2_0374
ER  - 
%0 Journal Article
%A Abbasi, Naser
%A Mottaghi Golshan, Hamid
%T On best approximation in fuzzy metric spaces
%J Kybernetika
%D 2015
%P 374-386
%V 51
%N 2
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-2-0374/
%R 10.14736/kyb-2015-2-0374
%G en
%F 10_14736_kyb_2015_2_0374
Abbasi, Naser; Mottaghi Golshan, Hamid. On best approximation in fuzzy metric spaces. Kybernetika, Tome 51 (2015) no. 2, pp. 374-386. doi: 10.14736/kyb-2015-2-0374

[1] Beer, G., Pai, D.: Proximal maps, prox maps and coincidence points. Numer. Funct. Anal. Optim. 11 (1990), 5-6, 429-448. | DOI | MR | Zbl

[2] Chang, S. S., Cho, Y. J., Kang, S. M.: Nonlinear Operator Theory in Probabilistic Metric Spaces. Nova Science Publishers Inc, New York 2001. | MR | Zbl

[3] Eldred, A. A., Veeramani, P.: Existence and convergence of best proximity points. J. Math. Anal. Appl. 323 (2006), 2, 1001-1006. | DOI | MR | Zbl

[4] George, A., Veeramani, P.: On some results in fuzzy metric spaces. Fuzzy Sets and Systems 64 (1994), 3, 395-399. | DOI | MR | Zbl

[5] George, A., Veeramani, P.: On some results of analysis for fuzzy metric spaces. Fuzzy Sets and Systems 90 (1997), 3, 365-368. | DOI | MR | Zbl

[6] Grabiec, M.: Fixed points in fuzzy metric spaces. Fuzzy Sets and Systems 27 (1998), 3, 385-389. | DOI | MR | Zbl

[7] Gregori, V., Romaguera, S.: Characterizing completable fuzzy metric spaces. Fuzzy Sets and Systems 144 (2004), 3, 411-420. | DOI | MR | Zbl

[8] Gregori, V., Romaguera, S.: Some properties of fuzzy metric spaces. Fuzzy Sets and Systems 115 (2000), 3, 485-489. | DOI | MR | Zbl

[9] Hadžić, O., Pap, E.: Fixed Point Theory in Probabilistic Metric Spaces. Kluwer Academic Publishers, Dordrecht 2001. | DOI | MR | Zbl

[10] Kainen, P. C.: Replacing points by compacta in neural network approximation. J. Franklin Inst. 341 (2004), 4, 391-399. | DOI | MR | Zbl

[11] Kirk, W. A., Srinivasan, P. S., Veeramani, P.: Fixed points for mappings satisfying cyclical contractive conditions. Fixed Point Theory 4 (2003), 1, 79-89. | MR | Zbl

[12] Kramosil, I., Michálek, J.: Fuzzy metrics and statistical metric spaces. Kybernetika 11 (1975), 5, 336-344. | MR | Zbl

[13] Menger, K.: Statistical metrics. Proc. Nat. Acad. Sci. U. S., A. 28 (1942), 535-537. | DOI | MR | Zbl

[14] Rodríguez-López, J., Romaguera, S.: The Hausdorff fuzzy metric on compact sets. Fuzzy Sets and Systems 147 (2004), 2, 273-283. | DOI | MR | Zbl

[15] Romaguera, S., Sanchis, M.: On fuzzy metric groups. Fuzzy Sets and Systems 124 (2001), 1, 109-115. | DOI | MR | Zbl

[16] Sahney, B. E., Singh, S. P.: On best simultaneous approximation. In: Approximation Theory III (E. W. Cheney, ed.), 1980, pp. 783-789. | MR | Zbl

[17] Schweizer, B., Sklar, A.: Statistical metric spaces. Pacific J. Math. 10 (1960), 314-334. | DOI | MR | Zbl

[18] Shams, M., Vaezpour, S. M.: Best approximation on probabilistic normed spaces. Chaos Solitons Fractals 41 (2009), 4, 1661-1667. | DOI | MR | Zbl

[19] Singer, I.: Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces. Springer-Verlag 1970. | DOI | MR | Zbl

[20] Vaezpour, S. M., Karimi, F.: t-best approximation in fuzzy normed spaces. Iran. J. Fuzzy Syst. 5 (2008), 2, 93-99. | MR | Zbl

[21] Veeramani, P.: Best approximation in fuzzy metric spaces. J. Fuzzy Math. 9 (2001), 1, 75-80. | MR | Zbl

[22] Xu, X.: A result on best proximity pair of two sets. J. Approx. Theory 54 (1988), 3, 322-325. | DOI | MR | Zbl

Cité par Sources :