Keywords: coupled oscillators; synchronization; invariant manifolds
@article{10_14736_kyb_2015_2_0347,
author = {Martins, Rog\'erio and Morais, Gon\c{c}alo},
title = {Generalized synchronization in a system of several non-autonomous oscillators coupled by a medium},
journal = {Kybernetika},
pages = {347--373},
year = {2015},
volume = {51},
number = {2},
doi = {10.14736/kyb-2015-2-0347},
mrnumber = {3350567},
zbl = {06487084},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-2-0347/}
}
TY - JOUR AU - Martins, Rogério AU - Morais, Gonçalo TI - Generalized synchronization in a system of several non-autonomous oscillators coupled by a medium JO - Kybernetika PY - 2015 SP - 347 EP - 373 VL - 51 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-2-0347/ DO - 10.14736/kyb-2015-2-0347 LA - en ID - 10_14736_kyb_2015_2_0347 ER -
%0 Journal Article %A Martins, Rogério %A Morais, Gonçalo %T Generalized synchronization in a system of several non-autonomous oscillators coupled by a medium %J Kybernetika %D 2015 %P 347-373 %V 51 %N 2 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-2-0347/ %R 10.14736/kyb-2015-2-0347 %G en %F 10_14736_kyb_2015_2_0347
Martins, Rogério; Morais, Gonçalo. Generalized synchronization in a system of several non-autonomous oscillators coupled by a medium. Kybernetika, Tome 51 (2015) no. 2, pp. 347-373. doi: 10.14736/kyb-2015-2-0347
[1] Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics, Springer, 1977. | DOI | MR | Zbl
[2] Hatcher, A.: Algebraic Topology. Cambridge University Press, 2002. | DOI | MR | Zbl
[3] Horn, R., Johnson, C.: Topics in Matrix Analysis. Cambridge University Press, 1990. | DOI | MR | Zbl
[4] Katriel, G.: Synchronization of oscillators coupled through an environment. Physica D 237 (2008), 2933-2944. | DOI | MR | Zbl
[5] Margheri, A., Martins, R.: Generalized synchronization in linearly coupled time periodic systems. J. Differential Equations 249 (2010), 3215-3232. | DOI | MR
[6] Morais, G.: Dinâmica de Osciladores Acoplados. PhD Thesis, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2013.
[7] Pantaleone, J.: Synchronization of metronomes. Am. J. Phys. 70 (2002), 992-1000. | DOI
[8] Smith, R. A.: Poincaré index theorem concerning periodic orbits of differential equations. Proc. London Math. Soc. s3-48 (1984), 2, 341-362. | DOI | MR | Zbl
[9] Smith, R. A.: Massera's convergence theorem for periodic nonlinear differential equations. J. Math. Anal. Appl 120 (1986), 679-708. | DOI | MR | Zbl
[10] Wazewski, T.: Sur un principle topologique de l'examen de l'allure asymptotique des integrales des Equations differentielles ordinaires. Ann. Soc. Polon Math. 20 (1947), 279-313. | MR
Cité par Sources :