Algebraic integrability for minimum energy curves
Kybernetika, Tome 51 (2015) no. 2, pp. 321-334
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper deals with integrability issues of the Euler-Lagrange equations associated to a variational problem, where the energy function depends on acceleration and drag. Although the motivation came from applications to path planning of underwater robot manipulators, the approach is rather theoretical and the main difficulties result from the fact that the power needed to push an object through a fluid increases as the cube of its speed.
This paper deals with integrability issues of the Euler-Lagrange equations associated to a variational problem, where the energy function depends on acceleration and drag. Although the motivation came from applications to path planning of underwater robot manipulators, the approach is rather theoretical and the main difficulties result from the fact that the power needed to push an object through a fluid increases as the cube of its speed.
DOI : 10.14736/kyb-2015-2-0321
Classification : 13N15, 34A34, 34C07, 34C14, 34H05
Keywords: Darboux polynomials; drag power; Euler–Lagrange equations; grading; integrability; vector fields
@article{10_14736_kyb_2015_2_0321,
     author = {Yudin, Ivan and Silva Leite, F\'atima},
     title = {Algebraic integrability for minimum energy curves},
     journal = {Kybernetika},
     pages = {321--334},
     year = {2015},
     volume = {51},
     number = {2},
     doi = {10.14736/kyb-2015-2-0321},
     mrnumber = {3350565},
     zbl = {06487082},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-2-0321/}
}
TY  - JOUR
AU  - Yudin, Ivan
AU  - Silva Leite, Fátima
TI  - Algebraic integrability for minimum energy curves
JO  - Kybernetika
PY  - 2015
SP  - 321
EP  - 334
VL  - 51
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-2-0321/
DO  - 10.14736/kyb-2015-2-0321
LA  - en
ID  - 10_14736_kyb_2015_2_0321
ER  - 
%0 Journal Article
%A Yudin, Ivan
%A Silva Leite, Fátima
%T Algebraic integrability for minimum energy curves
%J Kybernetika
%D 2015
%P 321-334
%V 51
%N 2
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-2-0321/
%R 10.14736/kyb-2015-2-0321
%G en
%F 10_14736_kyb_2015_2_0321
Yudin, Ivan; Silva Leite, Fátima. Algebraic integrability for minimum energy curves. Kybernetika, Tome 51 (2015) no. 2, pp. 321-334. doi: 10.14736/kyb-2015-2-0321

[1] Crouch, P., Leite, F. Silva: The dynamic interpolation problem: on Riemannian manifolds, Lie groups and symmetric spaces. J. Dynam. Control Systems 1 (1995), 2, 177-202. | DOI | MR

[2] Camarinha, M., Leite, F. Silva, Crouch, P.: On the geometry of Riemannian cubic polynomials. Differential Geom. Appl. 15 (2001), 15, 107-135. | DOI | MR

[3] Goriely, A.: Integrability and Nonintegrability of Dynamical Systems. Advanced Series in Nonlinear Dynamics 19, World Scientific Publishing Co., Inc., River Edge, NJ 2001. | DOI | MR | Zbl

[4] Hartman, P.: Ordinary Differential Equations. John Wiley and Sons Inc., New York 1964. | MR | Zbl

[5] Häusler, A. J., Saccon, A., Aguiar, A. P., Hauser, J., Pascoal, A.: Cooperative motion planning for multiple autonomous marine vehicles. In: Proc. 9th IFAC Conference on Manoeuvring and Control of Marine Craft 2012 (G. Bruzzone, ed.), International Federation of Automatic Control, 2012, pp. 244-249. | DOI

[6] Kruger, D., Stolkin, R., Blum, A., Briganti, J.: Optimal AUV path planning for extended missions in complex, fast-flowing estuarine environments. In: ICRA'07, IEEE 2007, pp. 4265-4270. | DOI

[7] Noakes, L., Heinzinger, G., Paden, B.: Cubic splines on curved spaces. IMA J. Math. Control Inform. 6 (1989), 4, 465-473. | DOI | MR | Zbl

Cité par Sources :