Algebraic integrability for minimum energy curves
Kybernetika, Tome 51 (2015) no. 2, pp. 321-334.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

This paper deals with integrability issues of the Euler-Lagrange equations associated to a variational problem, where the energy function depends on acceleration and drag. Although the motivation came from applications to path planning of underwater robot manipulators, the approach is rather theoretical and the main difficulties result from the fact that the power needed to push an object through a fluid increases as the cube of its speed.
DOI : 10.14736/kyb-2015-2-0321
Classification : 13N15, 34A34, 34C07, 34C14, 34H05
Keywords: Darboux polynomials; drag power; Euler–Lagrange equations; grading; integrability; vector fields
@article{10_14736_kyb_2015_2_0321,
     author = {Yudin, Ivan and Silva Leite, F\'atima},
     title = {Algebraic integrability for minimum energy curves},
     journal = {Kybernetika},
     pages = {321--334},
     publisher = {mathdoc},
     volume = {51},
     number = {2},
     year = {2015},
     doi = {10.14736/kyb-2015-2-0321},
     mrnumber = {3350565},
     zbl = {06487082},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-2-0321/}
}
TY  - JOUR
AU  - Yudin, Ivan
AU  - Silva Leite, Fátima
TI  - Algebraic integrability for minimum energy curves
JO  - Kybernetika
PY  - 2015
SP  - 321
EP  - 334
VL  - 51
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-2-0321/
DO  - 10.14736/kyb-2015-2-0321
LA  - en
ID  - 10_14736_kyb_2015_2_0321
ER  - 
%0 Journal Article
%A Yudin, Ivan
%A Silva Leite, Fátima
%T Algebraic integrability for minimum energy curves
%J Kybernetika
%D 2015
%P 321-334
%V 51
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-2-0321/
%R 10.14736/kyb-2015-2-0321
%G en
%F 10_14736_kyb_2015_2_0321
Yudin, Ivan; Silva Leite, Fátima. Algebraic integrability for minimum energy curves. Kybernetika, Tome 51 (2015) no. 2, pp. 321-334. doi : 10.14736/kyb-2015-2-0321. http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-2-0321/

Cité par Sources :