Algebraic integrability for minimum energy curves
Kybernetika, Tome 51 (2015) no. 2, pp. 321-334
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
This paper deals with integrability issues of the Euler-Lagrange equations associated to a variational problem, where the energy function depends on acceleration and drag. Although the motivation came from applications to path planning of underwater robot manipulators, the approach is rather theoretical and the main difficulties result from the fact that the power needed to push an object through a fluid increases as the cube of its speed.
DOI :
10.14736/kyb-2015-2-0321
Classification :
13N15, 34A34, 34C07, 34C14, 34H05
Keywords: Darboux polynomials; drag power; Euler–Lagrange equations; grading; integrability; vector fields
Keywords: Darboux polynomials; drag power; Euler–Lagrange equations; grading; integrability; vector fields
@article{10_14736_kyb_2015_2_0321,
author = {Yudin, Ivan and Silva Leite, F\'atima},
title = {Algebraic integrability for minimum energy curves},
journal = {Kybernetika},
pages = {321--334},
publisher = {mathdoc},
volume = {51},
number = {2},
year = {2015},
doi = {10.14736/kyb-2015-2-0321},
mrnumber = {3350565},
zbl = {06487082},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-2-0321/}
}
TY - JOUR AU - Yudin, Ivan AU - Silva Leite, Fátima TI - Algebraic integrability for minimum energy curves JO - Kybernetika PY - 2015 SP - 321 EP - 334 VL - 51 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-2-0321/ DO - 10.14736/kyb-2015-2-0321 LA - en ID - 10_14736_kyb_2015_2_0321 ER -
Yudin, Ivan; Silva Leite, Fátima. Algebraic integrability for minimum energy curves. Kybernetika, Tome 51 (2015) no. 2, pp. 321-334. doi: 10.14736/kyb-2015-2-0321
Cité par Sources :