Keywords: fractional optimization; indefinite quadratic optimization; semidefinite relaxation; diagonalization; generalized Newton method
@article{10_14736_kyb_2015_2_0293,
author = {Salahi, Maziar and Fallahi, Saeed},
title = {On the quadratic fractional optimization with a strictly convex quadratic constraint},
journal = {Kybernetika},
pages = {293--308},
year = {2015},
volume = {51},
number = {2},
doi = {10.14736/kyb-2015-2-0293},
mrnumber = {3350563},
zbl = {06487080},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-2-0293/}
}
TY - JOUR AU - Salahi, Maziar AU - Fallahi, Saeed TI - On the quadratic fractional optimization with a strictly convex quadratic constraint JO - Kybernetika PY - 2015 SP - 293 EP - 308 VL - 51 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-2-0293/ DO - 10.14736/kyb-2015-2-0293 LA - en ID - 10_14736_kyb_2015_2_0293 ER -
%0 Journal Article %A Salahi, Maziar %A Fallahi, Saeed %T On the quadratic fractional optimization with a strictly convex quadratic constraint %J Kybernetika %D 2015 %P 293-308 %V 51 %N 2 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-2-0293/ %R 10.14736/kyb-2015-2-0293 %G en %F 10_14736_kyb_2015_2_0293
Salahi, Maziar; Fallahi, Saeed. On the quadratic fractional optimization with a strictly convex quadratic constraint. Kybernetika, Tome 51 (2015) no. 2, pp. 293-308. doi: 10.14736/kyb-2015-2-0293
[1] Amaral, P., Judice, J., Sherali, H. D.: A reformulation-linearization-convexification algorithm for optimal correction of an inconsistent system of linear constraints. Comput. Oper. Res 35 (2008), 1494-1509. | DOI | MR | Zbl
[2] Bazaraa, M. S., Sherali, H. D., Shetty, C. M.: Nonlinear Programming. Wiley, New York 1993. | DOI | MR | Zbl
[3] Beck, A., Ben-Tal, A.: On the solution of the Tikhonov regularization of the regularized total least squares problem. SIAM J. Optim. 17 (2006), 98-118. | DOI | MR
[4] Beck, A., Ben-Tal, A., Teboulle, M.: Finding a global optimal solution for a quadratically constrained fractional quadratic problem with applications to the regularized total least squares. SIAM J. Matrix Anal. Appl. 28 (2006), 425-445. | DOI | MR | Zbl
[5] Beck, A., Teboulle, M.: On minimizing quadratically constrained ratio of two quadratic functions. J. Convex Anal. 17 (2010), 789-804. | MR | Zbl
[6] Beck, A., Teboulle, M.: A convex optimization approach for minimizing the ratio of indefinite quadratic functions over an ellipsoid. Math. Program. 118 (2009), 13-35. | DOI | MR | Zbl
[7] Benson, H. P.: Fractional programming with convex quadratic forms and functions. Eur. J. Oper. Res. 173 (2006), 351-369. | DOI | MR | Zbl
[8] Benson, H. P.: Solving sum of ratios fractional programs via concave minimization. J. Optim. Theory Appl. 135 (2007), 1-17. | DOI | MR | Zbl
[9] Benson, H. P.: A simplicial branch and bound duality-bounds algorithm for the linear sum-of-ratios problem. Eur. J. Oper. Res. 182 (2007), 597-611. | DOI | MR | Zbl
[10] Dinkelbach, W.: On Nonlinear Fractional Programming. Manage Sci. 13 (1967), 492-498. | DOI | MR | Zbl
[11] Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming, version 2.0 beta. 2013. DOI
[12] Laub, A. J.: Matrix Analysis for Scientists and Engineers. SIAM 2005. | DOI | MR | Zbl
[13] Lo, A. W., MacKinlay, A. C.: Maximizing predictability in the stock and bond markets. Macroecon. Dyn. 1 (1997), 102-134. | DOI | Zbl
[14] Ohlson, J. A., Ziemba, W. T.: Optimal portfolio policies for an investor with a power utility function facing a log normal securities market. J. Financ. Quant. Anal. 11 (1976), 57-71. | DOI
[15] Pong, T. K., Wolkowicz, H.: The generalized trust region subproblem. Comput. Optim. Appl. 58 (2014), 273-322. | DOI | MR
[16] Shen, P. P., Yuan, G. X.: Global optimization for the sum of generalized polynomial fractional functions. Math. Methods Oper. Res. 65 (2007), 445-459. | DOI | MR | Zbl
[17] Sturm, J. F., Zhang, S.: On cones of nonnegative quadratic functions. Math. Oper. Res. 28 (2003), 246-267. | DOI | MR | Zbl
[18] Tuy, H., Trach, P. T., Konno, H.: Optimization of polynomial fractional functions. J. Glob. Optim. 29 (2004), 19-44. | DOI | MR
[19] Yamamoto, R., Konno, H.: An efficient algorithm for solving convex-convex quadratic fractional programs. J. Optim. Theory Appl. 133 (2007), 241-255. | DOI | MR | Zbl
[20] Ye, Y., Zhang, Sh.: New results on quadratic minimization. SIAM J. Optim. 14 (2003), 245-267. | DOI | MR | Zbl
[21] Zhang, A., Hayashi, Sh.: Celis-Dennis-Tapia based approach to quadratic fractional programming problems with two quadratic constraints. Numer. Algebra Control. Optim. 1 (2011), 83-98. | DOI | MR | Zbl
[22] Zheng, X. J., Sun, X. L., Li, D., Xu, Y. F.: On zero duality gap in nonconvex quadratic programming problems. J. Glob. Optim. 52 (2012), 229-242. | DOI | MR | Zbl
Cité par Sources :