Quotient algebraic structures on the set of fuzzy numbers
Kybernetika, Tome 51 (2015) no. 2, pp. 255-267
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
A. M. Bica has constructed in [6] two isomorphic Abelian groups, defined on quotient sets of the set of those unimodal fuzzy numbers which have strictly monotone and continuous sides. In this paper, we extend the results of above mentioned paper, to a larger class of fuzzy numbers, by adding the flat fuzzy numbers. Furthermore, we add the topological structure and we characterize the constructed quotient groups, by using the set of the continuous functions with bounded variation, defined on $[0,1]$.
DOI :
10.14736/kyb-2015-2-0255
Classification :
08A72, 54H11
Keywords: fuzzy number; function with bounded variation; semigroup (monoid) with involution; topological group; metric space
Keywords: fuzzy number; function with bounded variation; semigroup (monoid) with involution; topological group; metric space
@article{10_14736_kyb_2015_2_0255,
author = {Fechete, Dorina and Fechete, Ioan},
title = {Quotient algebraic structures on the set of fuzzy numbers},
journal = {Kybernetika},
pages = {255--267},
publisher = {mathdoc},
volume = {51},
number = {2},
year = {2015},
doi = {10.14736/kyb-2015-2-0255},
mrnumber = {3350560},
zbl = {06487077},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-2-0255/}
}
TY - JOUR AU - Fechete, Dorina AU - Fechete, Ioan TI - Quotient algebraic structures on the set of fuzzy numbers JO - Kybernetika PY - 2015 SP - 255 EP - 267 VL - 51 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-2-0255/ DO - 10.14736/kyb-2015-2-0255 LA - en ID - 10_14736_kyb_2015_2_0255 ER -
Fechete, Dorina; Fechete, Ioan. Quotient algebraic structures on the set of fuzzy numbers. Kybernetika, Tome 51 (2015) no. 2, pp. 255-267. doi: 10.14736/kyb-2015-2-0255
Cité par Sources :