Quotient algebraic structures on the set of fuzzy numbers
Kybernetika, Tome 51 (2015) no. 2, pp. 255-267 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A. M. Bica has constructed in [6] two isomorphic Abelian groups, defined on quotient sets of the set of those unimodal fuzzy numbers which have strictly monotone and continuous sides. In this paper, we extend the results of above mentioned paper, to a larger class of fuzzy numbers, by adding the flat fuzzy numbers. Furthermore, we add the topological structure and we characterize the constructed quotient groups, by using the set of the continuous functions with bounded variation, defined on $[0,1]$.
A. M. Bica has constructed in [6] two isomorphic Abelian groups, defined on quotient sets of the set of those unimodal fuzzy numbers which have strictly monotone and continuous sides. In this paper, we extend the results of above mentioned paper, to a larger class of fuzzy numbers, by adding the flat fuzzy numbers. Furthermore, we add the topological structure and we characterize the constructed quotient groups, by using the set of the continuous functions with bounded variation, defined on $[0,1]$.
DOI : 10.14736/kyb-2015-2-0255
Classification : 08A72, 54H11
Keywords: fuzzy number; function with bounded variation; semigroup (monoid) with involution; topological group; metric space
@article{10_14736_kyb_2015_2_0255,
     author = {Fechete, Dorina and Fechete, Ioan},
     title = {Quotient algebraic structures on the set of fuzzy numbers},
     journal = {Kybernetika},
     pages = {255--267},
     year = {2015},
     volume = {51},
     number = {2},
     doi = {10.14736/kyb-2015-2-0255},
     mrnumber = {3350560},
     zbl = {06487077},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-2-0255/}
}
TY  - JOUR
AU  - Fechete, Dorina
AU  - Fechete, Ioan
TI  - Quotient algebraic structures on the set of fuzzy numbers
JO  - Kybernetika
PY  - 2015
SP  - 255
EP  - 267
VL  - 51
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-2-0255/
DO  - 10.14736/kyb-2015-2-0255
LA  - en
ID  - 10_14736_kyb_2015_2_0255
ER  - 
%0 Journal Article
%A Fechete, Dorina
%A Fechete, Ioan
%T Quotient algebraic structures on the set of fuzzy numbers
%J Kybernetika
%D 2015
%P 255-267
%V 51
%N 2
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-2-0255/
%R 10.14736/kyb-2015-2-0255
%G en
%F 10_14736_kyb_2015_2_0255
Fechete, Dorina; Fechete, Ioan. Quotient algebraic structures on the set of fuzzy numbers. Kybernetika, Tome 51 (2015) no. 2, pp. 255-267. doi: 10.14736/kyb-2015-2-0255

[1] Ban, A. I., Bede, B.: Power series of fuzzy numbers withy cross product and applications to fuzzy differential equations. J. Concrete Appl. Math 4 (2006), 2, 125-152. | MR

[2] Ban, A. I., Bica, A.: Solving systems of equivalentions. J. Appl. Math. Comput. 20 (2006), 1-2, 97-118. | DOI | MR | Zbl

[3] Bede, B.: Mathematics of Fuzzy Sets and Fuzzy Logic. Springer-Verlag, Berlin 2013. | MR | Zbl

[4] Benvenuti, P., Mesiar, R.: Pseudo-arithmetical operations as a basis for the general measure and integration theory. Inform. Sci. 160 (2004), 1-11. | DOI | MR | Zbl

[5] Bica, A. M.: One-sided fuzzy numbers and applications to integral equations from epidemiology. Fuzzy Sets and Systems 219 (2013), 27-48. | DOI | MR | Zbl

[6] Bica, A. M.: Algebraic structures for fuzzy numbers from categorial point of view. Soft Computing 11 (2007), 1099-1105. | DOI | Zbl

[7] Bica, A.: Categories and algebrical structures for real fuzzy numbers. Pure Math. Appl. 13 (2003), 1-2, 63-77. | MR

[8] Buckley, J. J.: On the algebra of interactive fuzzy numbers. Fuzzy Sets and Systems 32 (1989), 291-306. | DOI | MR | Zbl

[9] Buckley, J. J.: On the algebra of interactive fuzzy numbers: the continuous case. Fuzzy Sets and Systems 37 (1990), 317-326. | DOI | MR | Zbl

[10] Chen, S. H.: Operations of fuzzy numbers with step form membership function using function principle. Infor. Sci. 198 (1998), 149-155. | DOI | MR | Zbl

[11] Daňková, M.: Generalized extensionality of fuzzy relations. Fuzzy Sets and Systems 148 (2004), 291-304. | DOI | MR | Zbl

[12] Daňková, M.: Approximation of extensional fuzzy relations over a residuated lattice. Fuzzy Sets and Systems 161 (2010), 1973-1991. | DOI | MR | Zbl

[13] Delgado, M., Vila, M. A., Voxman, W.: On a canonical representation of fuzzy numbers. Fuzzy Sets and Systems 1998, 125-135. | DOI | Zbl

[14] Dubois, D., Prade, H.: Fuzzy numbers: an overview. In: Analysis of fuzzy information (J. Bezdek, ed.), vol. f. CRS, Boca Raton 1987, pp. 3-39. | MR | Zbl

[15] Dubois, D., Prade, H.: Fuzzy Sets and Systems: Theory and Applications. Academic Press, New York 1980. | MR | Zbl

[16] Dubois, D., Prade, H.: Fuzzy real algebra: some results. Fuzzy Sets and Systems 2 (1979), 327-348. | DOI | MR | Zbl

[17] Dubois, D., Prade, H.: Operations on fuzzy numbers. Int. J. Syst. Sci. 9 (1978), 613-626. | DOI | MR | Zbl

[18] Goetschel, R., Voxman, W.: Elementary fuzzy calculus. Fuzzy Sets and Systems 18 (1986), 31-43. | DOI | MR | Zbl

[19] Goetschel, R., Voxman, W.: Topological properties of fuzzy numbers. Fuzzy Sets and Systems 10 (1983), 87-99. | DOI | MR | Zbl

[20] Guerra, M. L., Stefanini, L.: Approximate fuzzy arithmetic operations using monotonic interpolations. Fuzzy Sets and Systems 150 (2005), 5-33. | DOI | MR | Zbl

[21] Hanss, M.: Applied Fuzzy Arithmetic: An Introduction with Engineering Applications. Springer-Verlag, Berlin 2005. | Zbl

[22] Holčapek, M., Štěpnička, M.: Arithmetics of extensional fuzzy numbers - Part I: Introduction. In: Proc. FUZZ-IEEE 2012, pp. 1517-1524. | DOI

[23] Holčapek, M., Štěpnička, M.: Arithmetics of extensional fuzzy numbers - Part II: Algebraic framework. In: Proc. FUZZ-IEEE 2012, pp. 1525-1532. | DOI

[24] Holčapek, M., Wrublová, M., Štěpnička, M.: On isomorphism theorems for MI-groups. In: Proc. EUSFLAT 2013, pp. 764-771.

[25] Hong, D. H., Lee, S.: Some algebraic properties and a distance measure for interval-valued fuzzy numbers. Inform. Sci. 148 (2002), 1-10. | DOI | MR | Zbl

[26] Hong, D. H., Moon, E. L., Kim, J. D.: A note on the core of fuzzy numbers. Appl. Math. Lett. 23 (2010), 282-285. | DOI | MR | Zbl

[27] Josephy, M.: Composing functions of bounded variation. Proc. Amer. Math. Soc. 83 (1981), 354-356. | DOI | MR | Zbl

[28] Kaufmann, A., Gupta, M. M.: Introduction to Fuzzy Arithmetic. Van Nostrand Reinhold, New York 1991. | MR | Zbl

[29] Kosiński, W.: Calculation and reasoning with ordered fuzzy numbers. In: EUSFLAT/LFA Proc. (E. Monseny and P. Sobrevilla, eds.), 2005, pp. 412-417.

[30] Kosiński, W., Prokopowicz, P., Ślezak, D.: Calculus with fuzzy numbers. In: IMTCI 2004, LNAI 3490 (L. Bolc et all., eds.), Springer-Verlag, Berlin, Heidelberg 2005, pp. 21-28.

[31] Kosiński, W., Prokopowicz, P., Ślezak, D.: Ordered fuzzy numbers. Bull. Pol. Acad. Sci. Math. 51 (2003), 3, 327-339. | MR | Zbl

[32] Kosiński, W.: On fuzzy number calculus. Int. J. Appl. Math. Comput. Sci. 16 (2006), 51-57. | MR

[33] Kovács, M., Tran, L. H.: Algebraic structure of centered M-fuzzy numbers. Fuzzy Sets and Systems 39 (1991), 91-99. | DOI | MR | Zbl

[34] Lowen, R.: On $\left( \mathbb{R}\left( L\right) ,\oplus\right) $. Fuzzy Sets and Systems. 10 (1983), 203-209. | DOI | MR

[35] Ma, M.: On embedding problems of fuzzy number spaces: Part 4. Fuzzy Sets and Systems 58 (1993), 185-193. | DOI | MR

[36] Ma, M., Friedman, M., Kandel, A.: A new fuzzy arithmetic. Fuzzy Sets and Systems 108 (1999), 83-90. | DOI | MR | Zbl

[37] Makó, Z.: Real vector space of LR-fuzzy intervals with respect to the shape-preserving t-norm-based addition. Fuzzy Sets and Systems 200 (2012), 136-149. | DOI | MR | Zbl

[38] Mareš, M.: Addition of fuzzy quantities: disjunction-conjunction approach. Kybernetika 25 (1989), 2, 104-116. | MR | Zbl

[39] Mareš, M.: Algebra of fuzzy quantities. Int. J. General Systems 20 (1991), 59-65. | DOI | Zbl

[40] Mareš, M.: Multiplication of fuzzy quantities. Kybernetika 28 (1992), 5, 337-356. | MR | Zbl

[41] Mareš, M.: Algebraic equivalences over fuzzy quantities. Kybernetika 29 (1993), 2, 122-132. | MR | Zbl

[42] Mareš, M.: Computation over Fuzzy Quantities. CRC Press, Boca Raton 1994. | MR | Zbl

[43] Mareš, M.: Brief note on distributivity of triangular fuzzy numbers. Kybernetika 31 (1995), 5, 451-457. | MR | Zbl

[44] Mareš, M.: Equivalentions over fuzzy quantities. Tatra Mountains Math. Publ. 6 (1995), 117-121. | MR | Zbl

[45] Mareš, M.: Fuzzy zero, algebraic equivalence: yes or no?. Kybernetika 32 (1996), 4, 343-351. | MR | Zbl

[46] Mareš, M.: Weak arthmetics of fuzzy numbers. Fuzzy Sets and Systems 91 (1997), 143-153. | DOI | MR

[47] Mesiar, R., Rybárik, J.: Pan-operations structure. Fuzzy Sets and Systems 74 (1995), 365-369. | DOI | MR | Zbl

[48] Maturo, A.: On some structures of fuzzy numbers. Iranian J. Fuzzy Syst. 6 (2009), 49-59. | MR | Zbl

[49] Natanson, I. P.: Theory of Functions of a Real Variable, 1-2. F. Ungar Publ. 1955 - 1961 (translated from Russian: Soviet Academic Press, Moscow 1950). | MR

[50] Qiu, D., Lu, C., Zhang, W., Lan, Y.: Algebraic properties and topological properties of the quotient space of fuzzy numbers based on Mareš equivalence relation. Fuzzy Sets and Systems 245 (2014), 63-82. | MR

[51] Qiu, D., Zhang, W.: Symmetric fuzzy numbers and additive equivalence of fuzzy numbers. Soft Computing 17 (2013), 1471-1477. | DOI

[52] Royden, H. L.: Real Analysis. The Macmillan Co., New York, London 1969. | MR | Zbl

[53] Stefanini, L., Sorini, L., Guerra, M. L.: Parametric representation of fuzzy numbers and application to fuzzy calculus. Fuzzy Sets and Systems 157 (2006), 2423-2455. | DOI | MR | Zbl

[54] Stefanini, L.: A generalization of Hukuhara difference and division for interval and fuzzy arithmetic. Fuzzy Sets and Systems 151 (2010), 1564-1584. | DOI | MR | Zbl

[55] Vrba, J.: A note on inverses in arithmetic with fuzzy numbers. Fuzzy Sets and Systems 50 (1992), 267-278. | DOI | MR

[56] Zhao, R., Govind, R.: Algebraic characteristics of extended fuzzy numbers. Inform. Sci. 54 (1991), 103-130. | DOI | MR | Zbl

Cité par Sources :