A local approach to $g$-entropy
Kybernetika, Tome 51 (2015) no. 2, pp. 231-245
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, a local approach to the concept of $g$-entropy is presented. Applying the Choquet`s representation Theorem, the introduced concept is stated in terms of $g$-entropy.
In this paper, a local approach to the concept of $g$-entropy is presented. Applying the Choquet`s representation Theorem, the introduced concept is stated in terms of $g$-entropy.
DOI : 10.14736/kyb-2015-2-0231
Classification : 28D20, 28E10
Keywords: fuzzy entropy; $g$-entropy; local entropy
@article{10_14736_kyb_2015_2_0231,
     author = {Rahimi, Mehdi},
     title = {A local approach to $g$-entropy},
     journal = {Kybernetika},
     pages = {231--245},
     year = {2015},
     volume = {51},
     number = {2},
     doi = {10.14736/kyb-2015-2-0231},
     mrnumber = {3350558},
     zbl = {06487075},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-2-0231/}
}
TY  - JOUR
AU  - Rahimi, Mehdi
TI  - A local approach to $g$-entropy
JO  - Kybernetika
PY  - 2015
SP  - 231
EP  - 245
VL  - 51
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-2-0231/
DO  - 10.14736/kyb-2015-2-0231
LA  - en
ID  - 10_14736_kyb_2015_2_0231
ER  - 
%0 Journal Article
%A Rahimi, Mehdi
%T A local approach to $g$-entropy
%J Kybernetika
%D 2015
%P 231-245
%V 51
%N 2
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-2-0231/
%R 10.14736/kyb-2015-2-0231
%G en
%F 10_14736_kyb_2015_2_0231
Rahimi, Mehdi. A local approach to $g$-entropy. Kybernetika, Tome 51 (2015) no. 2, pp. 231-245. doi: 10.14736/kyb-2015-2-0231

[1] Brin, M., Katok, A.: On local entropy in geometric dynamics. Springer-Verlag, New York 1983 (Lecture Notes in Mathematics 1007) (1983), pp. 30-38. | DOI | MR

[2] Butnariu, D., Klement, E. P.: Triangular norm-based measures and their Markov kernel representation. J. Math. Anal. Appl. 162 (1991), 111-143. | DOI | MR | Zbl

[3] Dumitrescu, D.: Measure-preserving transformation and the entropy of a fuzzy partition. In: 13th Linz Seminar on Fuzzy Set Theory, Linz 1991, pp. 25-27.

[4] Dumitrescu, D.: Fuzzy measures and the entropy of fuzzy partitions. J. Math. Anal. Appl. 176 (1993), 359-373. | DOI | MR | Zbl

[5] Dumitrescu, D.: Entropy of a fuzzy process. Fuzzy Sets and Systems 55 (1993), 169-177. | DOI | MR | Zbl

[6] Dumitrescu, D.: Entropy of fuzzy dynamical systems. Fuzzy Sets and Systems 70 (1995), 45-57. | DOI | MR | Zbl

[7] Markechová, D.: The entropy on F-quantum spaces. Math. Slovaca 40 (1990), 177-190. | MR | Zbl

[8] Markechová, D.: The entropy of fuzzy dynamical systems and generators. Fuzzy Sets and Systems 48 (1992), 351-363. | DOI | MR | Zbl

[9] Markechová, D.: Entropy of complete fuzzy partitions. Math. Slovaca 43 (1993), 1, 1-10. | MR | Zbl

[10] Markechová, D.: A note to the Kolmogorov-Sinaj entropy of fuzzy dynamical systems. Fuzzy Sets and Systems 64 (1994), 87-90. | DOI | MR | Zbl

[11] McMillan, B.: The basic theorems of information theory. Ann. Math. Statist. 24 (1953), 196-219. | DOI | MR | Zbl

[12] Mesiar, R., Rybárik, J.: Entropy of fuzzy partitions: A general model. Fuzzy Sets and Systems 99 (1998), 73-79. | DOI | MR | Zbl

[13] Rahimi, M., Riazi, A.: Entropy operator for continuous dynamical systems of finite topological entropy. Bull. Iranian Math. Soc. 38 (2012), 4, 883-892. | MR

[14] Rahimi, M., Riazi, A.: On local entropy of fuzzy partitions. Fuzzy Sets and Systems 234 (2014), 97-108. | DOI | MR

[15] Riečan, B.: On a type of entropy of dynamical systems. Tatra Mountains Math. Publ. 1 (1992), 135-140. | MR | Zbl

[16] Riečan, B.: On the $g$-entropy and its Hudetz correction. Kybernetika 38 (2002), 4, 493-500. | DOI | MR | Zbl

[17] Riečan, B., Markechová, D.: The entropy of fuzzy dynamical systems, general scheme and generators. Fuzzy Sets and Systems 96 (1998), 191-199. | DOI | MR | Zbl

[18] Riečan, B., Neubrunn, T.: Integral, Measure, and Ordering. Kluwer, Dordrecht and Ister, Bratislava 1997. | DOI | MR | Zbl

[19] Rybárik, J.: The entropy of the Q-F-dynamical systems. Busefal 48 (1991), 24-26.

[20] Rybárik, J.: The entropy based on pseudoarithmetical operations. Tatra Mountains Math. Publ. 6 (1995), 157-164. | MR

[21] Pesin, Ya.: Characteristic Lyapunov exponents and smooth ergodic theory. Russian Math. Surveys 32 (1977), 54-114. | DOI | MR | Zbl

[22] Phelps, R.: Lectures on Choquet's Theorem. Van Nostrand, Princeton, N.J. 1966. | MR | Zbl

[23] Ruelle, D.: An inequality for the entropy of differential maps. Bol. Soc. Bras. de Mat. 9 (1978), 83-87. | DOI | MR

[24] Walters, P.: An Introduction to Ergodic Theory. Springer-Verlag, 1982. | MR | Zbl

Cité par Sources :