Keywords: Archimedean operation; additive generator; diagonal generator; multiplicative generator; (Archimedean) $n$-copula; (Archimedean) $n$-quasicopula
@article{10_14736_kyb_2015_2_0212,
author = {Wysocki, W{\l}odzimierz},
title = {Characterizations of {Archimedean} $n$-copulas},
journal = {Kybernetika},
pages = {212--230},
year = {2015},
volume = {51},
number = {2},
doi = {10.14736/kyb-2015-2-0212},
mrnumber = {3350557},
zbl = {06487074},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-2-0212/}
}
Wysocki, Włodzimierz. Characterizations of Archimedean $n$-copulas. Kybernetika, Tome 51 (2015) no. 2, pp. 212-230. doi: 10.14736/kyb-2015-2-0212
[1] Alsina, C., Nelsen, R. B., Schweizer, B.: On the characterization of a class of binary operations on distribution functions. Statist. Probab. Lett. 17 (1993), 85-89. | DOI | MR | Zbl
[2] Cuculescu, I., Theodorescu, R.: Copulas: diagonals, tracks. Rev. Roumaine Math. Pures Appl. 46 (2001), 731-742. | MR | Zbl
[3] Dudek, W. A., Trokhimenko, V. S.: Menger algebras of multiplace functions. Universitatea de Stat din Moldova, Chişinău, 2006 (in Russian). | MR | Zbl
[4] Durante, F., Sempi, C.: Copula theory: an introduction. In: Workshop on Copula Theory and its Applications (P. Jaworski et al. eds.), Lecture Notes in Statist. Proc. 198, Springer 2010, pp. 3-31. | DOI | MR
[5] sciences, Encyclopedia of statistical: Vol. 2, second edition. Wiley 2006, pp. 1363-1367.
[6] Fang, K. T., Fang, B. Q.: Some families of multivariate symmetric distributions related to exponential distribution. J. Multivariate Anal. 24 (1998), 109-122. | DOI | MR | Zbl
[7] Feller, W.: An introduction to probability theory and its applications. Vol. II, second edition. Wiley, New York 1971. | MR
[8] Genest, C., MacKay, J.: Copules archimédiennes et familles des lois bidimensionnelles dont les marges sont données. Canad. J. Statist. 14 (1986), 145-159. | DOI | MR
[9] Genest, C., MacKay, J.: The joy of copulas: Bivariate distributions with uniform marginals. Amer. Statist. 40 (1986), 280-285. | DOI | MR
[10] Genest, C., Quesada-Molina, L. J., Rodríguez-Lallena, J. A., Sempi, C.: A characterization of quasicopulas. J. Multivariate Anal. 69 (1999), 193-205. | DOI | MR
[11] Gluskin, L. M.: Positional operatives. Dokl. Akad. Nauk SSSR 157 (1964), 767-770 (in Russian). | MR | Zbl
[12] Gluskin, L. M.: Positional operatives. Mat. Sb. (N.S.) 68 (110) (1965), 444-472 (in Russian). | MR | Zbl
[13] Gluskin, L. M.: Positional operatives. Dokl. Akad. Nauk SSSR 182 (1968), 1000-1003 (in Russian). | MR | Zbl
[14] Hutchinson, T. P., Lai, C. D.: Continuous bivariate distributions. Emphasising applications. Rumsby Scientific, Adelaide 1990. | MR | Zbl
[15] Jaworski, P.: On copulas and their diagonals. Inform. Sci. 179 (2009), 2863-2871. | DOI | MR | Zbl
[16] Joe, H.: Multivariate Models and Dependence Concepts. Chapman and Hall, London 1997. | DOI | MR | Zbl
[17] Jouini, M. N., Clemen, R. T.: Copula models for aggregating expert opinions. Oper. Research 44 (1996), 444-457. | DOI | Zbl
[18] Kimberling, C. H.: A probabilistic interpretation of complete monotonicity. Aequationes Math. 10 (1974), 152-164. | DOI | MR | Zbl
[19] Kuczma, M.: Functional equations in a single variable. Monografie Mat. 46, PWN, Warszawa 1968. | MR | Zbl
[20] Ling, C. H.: Representation of associative functions. Publ. Math. Debrecen 12 (1965), 189-212. | MR | Zbl
[21] McNeil, A. J., Nešlehová, J.: Multivariate Archimedean copulas, $d$-monotone functions and $l_1$-norm symmetric distributions. Ann. Statist. 37 (2009), 3059-3097. | DOI | MR
[22] Nelsen, R. B.: An introduction to copulas. Springer, 2006. | DOI | MR | Zbl
[23] Nelsen, R. B., Quesada-Molina, J. J., Rodr{í}guez-Lallena, J. A., Úbeda-Flores, M.: Multivariate Archimedean quasi-copulas. In: Distributions with given Marginals and Statistical Modelling. Kluwer, 2002, pp. 179-185. | DOI | MR | Zbl
[24] Rüschendorf, L.: Mathematical risk analysis. Dependence, risk bounds, optimal allocations and portfolios. Springer, 2013 (Chapter 1). | DOI | MR | Zbl
[25] Stupňanová, A., Kolesárová, A.: Associative $n$-dimensional copulas. Kybernetika 47 (2011), 93-99. | MR | Zbl
[26] Sungur, E. A., Yang, Y.: Diagonal copulas of Archimedean class. Comm. Statist. Theory Methods 25 (1996), 1659-1676. | DOI | MR | Zbl
[27] Williamson, R. E.: Multiple monotone functions and their Laplace transforms. Duke Math. J. 23 (1956), 189-207. | DOI | MR
[28] Wysocki, W.: Constructing Archimedean copulas from diagonal sections. Statist. Probab. Lett. 82 (2012), 818-826. | DOI | MR | Zbl
[29] Wysocki, W.: When a copula is archimax. Statist. Probab. Lett. 83 (2013), 37-45. | DOI | MR
Cité par Sources :