Characterizations of Archimedean $n$-copulas
Kybernetika, Tome 51 (2015) no. 2, pp. 212-230.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We present three characterizations of $n$-dimensional Archimedean copulas: algebraic, differential and diagonal. The first is due to Jouini and Clemen. We formulate it in a more general form, in terms of an $n$-variable operation derived from a binary operation. The second characterization is in terms of first order partial derivatives of the copula. The last characterization uses diagonal generators, which are ``regular'' diagonal sections of copulas, enabling one to recover the copulas by means of an asymptotic representation.
DOI : 10.14736/kyb-2015-2-0212
Classification : 62H20
Keywords: Archimedean operation; additive generator; diagonal generator; multiplicative generator; (Archimedean) $n$-copula; (Archimedean) $n$-quasicopula
@article{10_14736_kyb_2015_2_0212,
     author = {Wysocki, W{\l}odzimierz},
     title = {Characterizations of {Archimedean} $n$-copulas},
     journal = {Kybernetika},
     pages = {212--230},
     publisher = {mathdoc},
     volume = {51},
     number = {2},
     year = {2015},
     doi = {10.14736/kyb-2015-2-0212},
     mrnumber = {3350557},
     zbl = {06487074},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-2-0212/}
}
TY  - JOUR
AU  - Wysocki, Włodzimierz
TI  - Characterizations of Archimedean $n$-copulas
JO  - Kybernetika
PY  - 2015
SP  - 212
EP  - 230
VL  - 51
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-2-0212/
DO  - 10.14736/kyb-2015-2-0212
LA  - en
ID  - 10_14736_kyb_2015_2_0212
ER  - 
%0 Journal Article
%A Wysocki, Włodzimierz
%T Characterizations of Archimedean $n$-copulas
%J Kybernetika
%D 2015
%P 212-230
%V 51
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-2-0212/
%R 10.14736/kyb-2015-2-0212
%G en
%F 10_14736_kyb_2015_2_0212
Wysocki, Włodzimierz. Characterizations of Archimedean $n$-copulas. Kybernetika, Tome 51 (2015) no. 2, pp. 212-230. doi : 10.14736/kyb-2015-2-0212. http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-2-0212/

Cité par Sources :