Characterizations of Archimedean $n$-copulas
Kybernetika, Tome 51 (2015) no. 2, pp. 212-230
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We present three characterizations of $n$-dimensional Archimedean copulas: algebraic, differential and diagonal. The first is due to Jouini and Clemen. We formulate it in a more general form, in terms of an $n$-variable operation derived from a binary operation. The second characterization is in terms of first order partial derivatives of the copula. The last characterization uses diagonal generators, which are ``regular'' diagonal sections of copulas, enabling one to recover the copulas by means of an asymptotic representation.
We present three characterizations of $n$-dimensional Archimedean copulas: algebraic, differential and diagonal. The first is due to Jouini and Clemen. We formulate it in a more general form, in terms of an $n$-variable operation derived from a binary operation. The second characterization is in terms of first order partial derivatives of the copula. The last characterization uses diagonal generators, which are ``regular'' diagonal sections of copulas, enabling one to recover the copulas by means of an asymptotic representation.
DOI : 10.14736/kyb-2015-2-0212
Classification : 62H20
Keywords: Archimedean operation; additive generator; diagonal generator; multiplicative generator; (Archimedean) $n$-copula; (Archimedean) $n$-quasicopula
@article{10_14736_kyb_2015_2_0212,
     author = {Wysocki, W{\l}odzimierz},
     title = {Characterizations of {Archimedean} $n$-copulas},
     journal = {Kybernetika},
     pages = {212--230},
     year = {2015},
     volume = {51},
     number = {2},
     doi = {10.14736/kyb-2015-2-0212},
     mrnumber = {3350557},
     zbl = {06487074},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-2-0212/}
}
TY  - JOUR
AU  - Wysocki, Włodzimierz
TI  - Characterizations of Archimedean $n$-copulas
JO  - Kybernetika
PY  - 2015
SP  - 212
EP  - 230
VL  - 51
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-2-0212/
DO  - 10.14736/kyb-2015-2-0212
LA  - en
ID  - 10_14736_kyb_2015_2_0212
ER  - 
%0 Journal Article
%A Wysocki, Włodzimierz
%T Characterizations of Archimedean $n$-copulas
%J Kybernetika
%D 2015
%P 212-230
%V 51
%N 2
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-2-0212/
%R 10.14736/kyb-2015-2-0212
%G en
%F 10_14736_kyb_2015_2_0212
Wysocki, Włodzimierz. Characterizations of Archimedean $n$-copulas. Kybernetika, Tome 51 (2015) no. 2, pp. 212-230. doi: 10.14736/kyb-2015-2-0212

[1] Alsina, C., Nelsen, R. B., Schweizer, B.: On the characterization of a class of binary operations on distribution functions. Statist. Probab. Lett. 17 (1993), 85-89. | DOI | MR | Zbl

[2] Cuculescu, I., Theodorescu, R.: Copulas: diagonals, tracks. Rev. Roumaine Math. Pures Appl. 46 (2001), 731-742. | MR | Zbl

[3] Dudek, W. A., Trokhimenko, V. S.: Menger algebras of multiplace functions. Universitatea de Stat din Moldova, Chişinău, 2006 (in Russian). | MR | Zbl

[4] Durante, F., Sempi, C.: Copula theory: an introduction. In: Workshop on Copula Theory and its Applications (P. Jaworski et al. eds.), Lecture Notes in Statist. Proc. 198, Springer 2010, pp. 3-31. | DOI | MR

[5] sciences, Encyclopedia of statistical: Vol. 2, second edition. Wiley 2006, pp. 1363-1367.

[6] Fang, K. T., Fang, B. Q.: Some families of multivariate symmetric distributions related to exponential distribution. J. Multivariate Anal. 24 (1998), 109-122. | DOI | MR | Zbl

[7] Feller, W.: An introduction to probability theory and its applications. Vol. II, second edition. Wiley, New York 1971. | MR

[8] Genest, C., MacKay, J.: Copules archimédiennes et familles des lois bidimensionnelles dont les marges sont données. Canad. J. Statist. 14 (1986), 145-159. | DOI | MR

[9] Genest, C., MacKay, J.: The joy of copulas: Bivariate distributions with uniform marginals. Amer. Statist. 40 (1986), 280-285. | DOI | MR

[10] Genest, C., Quesada-Molina, L. J., Rodríguez-Lallena, J. A., Sempi, C.: A characterization of quasicopulas. J. Multivariate Anal. 69 (1999), 193-205. | DOI | MR

[11] Gluskin, L. M.: Positional operatives. Dokl. Akad. Nauk SSSR 157 (1964), 767-770 (in Russian). | MR | Zbl

[12] Gluskin, L. M.: Positional operatives. Mat. Sb. (N.S.) 68 (110) (1965), 444-472 (in Russian). | MR | Zbl

[13] Gluskin, L. M.: Positional operatives. Dokl. Akad. Nauk SSSR 182 (1968), 1000-1003 (in Russian). | MR | Zbl

[14] Hutchinson, T. P., Lai, C. D.: Continuous bivariate distributions. Emphasising applications. Rumsby Scientific, Adelaide 1990. | MR | Zbl

[15] Jaworski, P.: On copulas and their diagonals. Inform. Sci. 179 (2009), 2863-2871. | DOI | MR | Zbl

[16] Joe, H.: Multivariate Models and Dependence Concepts. Chapman and Hall, London 1997. | DOI | MR | Zbl

[17] Jouini, M. N., Clemen, R. T.: Copula models for aggregating expert opinions. Oper. Research 44 (1996), 444-457. | DOI | Zbl

[18] Kimberling, C. H.: A probabilistic interpretation of complete monotonicity. Aequationes Math. 10 (1974), 152-164. | DOI | MR | Zbl

[19] Kuczma, M.: Functional equations in a single variable. Monografie Mat. 46, PWN, Warszawa 1968. | MR | Zbl

[20] Ling, C. H.: Representation of associative functions. Publ. Math. Debrecen 12 (1965), 189-212. | MR | Zbl

[21] McNeil, A. J., Nešlehová, J.: Multivariate Archimedean copulas, $d$-monotone functions and $l_1$-norm symmetric distributions. Ann. Statist. 37 (2009), 3059-3097. | DOI | MR

[22] Nelsen, R. B.: An introduction to copulas. Springer, 2006. | DOI | MR | Zbl

[23] Nelsen, R. B., Quesada-Molina, J. J., Rodr{í}guez-Lallena, J. A., Úbeda-Flores, M.: Multivariate Archimedean quasi-copulas. In: Distributions with given Marginals and Statistical Modelling. Kluwer, 2002, pp. 179-185. | DOI | MR | Zbl

[24] Rüschendorf, L.: Mathematical risk analysis. Dependence, risk bounds, optimal allocations and portfolios. Springer, 2013 (Chapter 1). | DOI | MR | Zbl

[25] Stupňanová, A., Kolesárová, A.: Associative $n$-dimensional copulas. Kybernetika 47 (2011), 93-99. | MR | Zbl

[26] Sungur, E. A., Yang, Y.: Diagonal copulas of Archimedean class. Comm. Statist. Theory Methods 25 (1996), 1659-1676. | DOI | MR | Zbl

[27] Williamson, R. E.: Multiple monotone functions and their Laplace transforms. Duke Math. J. 23 (1956), 189-207. | DOI | MR

[28] Wysocki, W.: Constructing Archimedean copulas from diagonal sections. Statist. Probab. Lett. 82 (2012), 818-826. | DOI | MR | Zbl

[29] Wysocki, W.: When a copula is archimax. Statist. Probab. Lett. 83 (2013), 37-45. | DOI | MR

Cité par Sources :