Characterizations of Archimedean $n$-copulas
Kybernetika, Tome 51 (2015) no. 2, pp. 212-230
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We present three characterizations of $n$-dimensional Archimedean copulas: algebraic, differential and diagonal. The first is due to Jouini and Clemen. We formulate it in a more general form, in terms of an $n$-variable operation derived from a binary operation. The second characterization is in terms of first order partial derivatives of the copula. The last characterization uses diagonal generators, which are ``regular'' diagonal sections of copulas, enabling one to recover the copulas by means of an asymptotic representation.
DOI :
10.14736/kyb-2015-2-0212
Classification :
62H20
Keywords: Archimedean operation; additive generator; diagonal generator; multiplicative generator; (Archimedean) $n$-copula; (Archimedean) $n$-quasicopula
Keywords: Archimedean operation; additive generator; diagonal generator; multiplicative generator; (Archimedean) $n$-copula; (Archimedean) $n$-quasicopula
@article{10_14736_kyb_2015_2_0212,
author = {Wysocki, W{\l}odzimierz},
title = {Characterizations of {Archimedean} $n$-copulas},
journal = {Kybernetika},
pages = {212--230},
publisher = {mathdoc},
volume = {51},
number = {2},
year = {2015},
doi = {10.14736/kyb-2015-2-0212},
mrnumber = {3350557},
zbl = {06487074},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-2-0212/}
}
Wysocki, Włodzimierz. Characterizations of Archimedean $n$-copulas. Kybernetika, Tome 51 (2015) no. 2, pp. 212-230. doi: 10.14736/kyb-2015-2-0212
Cité par Sources :