Generalized madogram and pairwise dependence of maxima over two regions of a random field
Kybernetika, Tome 51 (2015) no. 2, pp. 193-211
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Spatial environmental processes often exhibit dependence in their large values. In order to model such processes their dependence properties must be characterized and quantified. In this paper we introduce a measure that evaluates the dependence among extreme observations located in two disjoint sets of locations of $\mathbb{R}^2$. We compute the range of this new dependence measure, which extends the existing $\lambda$-madogram concept, and compare it with extremal coefficients, finding generalizations of the known relations in the pairwise approach. Estimators for this measure are introduced and asymptotic normality and strong consistency are shown. An application to the annual maxima precipitation in Portuguese regions is presented.
Spatial environmental processes often exhibit dependence in their large values. In order to model such processes their dependence properties must be characterized and quantified. In this paper we introduce a measure that evaluates the dependence among extreme observations located in two disjoint sets of locations of $\mathbb{R}^2$. We compute the range of this new dependence measure, which extends the existing $\lambda$-madogram concept, and compare it with extremal coefficients, finding generalizations of the known relations in the pairwise approach. Estimators for this measure are introduced and asymptotic normality and strong consistency are shown. An application to the annual maxima precipitation in Portuguese regions is presented.
DOI : 10.14736/kyb-2015-2-0193
Classification : 60G60, 60G70
Keywords: max-stable random field; dependence coefficients; extreme values
@article{10_14736_kyb_2015_2_0193,
     author = {Fonseca, Cec{\'\i}lia and Pereira, Lu{\'\i}sa and Ferreira, Helena and Martins, Ana Paula},
     title = {Generalized madogram and pairwise dependence of maxima over two regions of a random field},
     journal = {Kybernetika},
     pages = {193--211},
     year = {2015},
     volume = {51},
     number = {2},
     doi = {10.14736/kyb-2015-2-0193},
     mrnumber = {3350556},
     zbl = {06487073},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-2-0193/}
}
TY  - JOUR
AU  - Fonseca, Cecília
AU  - Pereira, Luísa
AU  - Ferreira, Helena
AU  - Martins, Ana Paula
TI  - Generalized madogram and pairwise dependence of maxima over two regions of a random field
JO  - Kybernetika
PY  - 2015
SP  - 193
EP  - 211
VL  - 51
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-2-0193/
DO  - 10.14736/kyb-2015-2-0193
LA  - en
ID  - 10_14736_kyb_2015_2_0193
ER  - 
%0 Journal Article
%A Fonseca, Cecília
%A Pereira, Luísa
%A Ferreira, Helena
%A Martins, Ana Paula
%T Generalized madogram and pairwise dependence of maxima over two regions of a random field
%J Kybernetika
%D 2015
%P 193-211
%V 51
%N 2
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-2-0193/
%R 10.14736/kyb-2015-2-0193
%G en
%F 10_14736_kyb_2015_2_0193
Fonseca, Cecília; Pereira, Luísa; Ferreira, Helena; Martins, Ana Paula. Generalized madogram and pairwise dependence of maxima over two regions of a random field. Kybernetika, Tome 51 (2015) no. 2, pp. 193-211. doi: 10.14736/kyb-2015-2-0193

[1] Beirlant, J., Goegebeur, Y., Segers, J., Teugels, J.: Statistics of Extremes: Theory and Applications. John Wiley 2004. | DOI | MR | Zbl

[2] Cooley, D., Naveau, P., Poncet, P.: Variograms for spatial max-stable random fields. Dependence in Probability and Statistics 187 (2006), 373-390. | DOI | MR | Zbl

[3] Coles, S. G.: Regional modelling of extreme storms via max-stable processes. J. Roy. Statist. Soc. B 55 (1993), 797-816. | MR | Zbl

[4] Haan, L. de: A spectral representation for max-stable proesses. Ann. Probab. 12 (1984), 1194-1204. | DOI | MR

[5] Haan, L. de, Pickands, J.: Stationary min-stable stochastic processes. Probab. Theory Related Fields 72 (1986), 477-492. | DOI | MR | Zbl

[6] Fermanian, J. D., Radulovic, D., Wegkamp, M.: Weak convergence of empirical copula processes. Bernoulli 10 (2004), 847-860. | DOI | MR | Zbl

[7] Ferreira, H.: Dependence between two multivariate extremes. Statist. Probab. Lett. 81 (2011), 5, 586-591. | DOI | MR | Zbl

[8] Gilat, D., Hill, T.: One-sided refinements of the strong law of large numbers and the Glivenko-Cantelli Theorem. Ann. Probab. 20 (1992), 1213-1221. | DOI | MR | Zbl

[9] Krajina, A.: An M-Estimator of Multivariate Dependence Concepts. Tilburg University Press, Tilburg 2010.

[10] Naveau, P., Guillou, A., Cooley, D., Diebolt, J.: Modelling pairwise dependence of maxima in space. Biometrika 96 (2009), 1, 1-17. | DOI | MR | Zbl

[11] Neuhaus, G.: On the weak convergence of stochastic processes with multidimensional time parameter. Ann. Math. Statist. 42 (1971), 4, 1285-1295. | DOI | MR

[12] Resnick, S. I.: Extreme Values, Regular Variation and Point Processes. Springer-Verlag, Berlin 1987. | DOI | MR | Zbl

[13] Ribatet, M.: A User's Guide to the Spatial Extremes Package. Unpublished, 2009. DOI 

[14] Schlather, M.: Models for stationary max-stable random fields. Extremes 5 (2002), 1, 33-44. | DOI | MR | Zbl

[15] Schlather, M., Tawn, J.: A dependece measure for multivariate and spatial extreme values: Properties and inference. Biometrika 90 (2003), 139-156. | DOI | MR

[16] Smith, R. L.: Max-stable processes and spatial extremes. Unpublished manuscript, 1990. DOI 

[17] Smith, R. L., Weissman, I.: Characterization and Estimation of the Multivariate Extremal Index. Technical Report, Department of Statistics, University of North Carolina 1996. DOI 

[18] Vaart, A. Van Der, Wellner, J. A.: Weak Convergence and Empirical Processes. Springer-Verlag, New York 1996. | DOI | MR

[19] Vatan, P.: Max-infinite divisibility and max-stability in infinite dimensions. Probability in Banach Spaces V, Lect. Notes in Math. 1153 (1985), 400-425. | DOI | MR | Zbl

[20] Zhang, Z., Smith, R. L.: The behavior of multivariate maxima of moving maxima processes. J. Appl. Probab. 41 (2004), 4, 1113-1123. | DOI | MR | Zbl

[21] Zhang, Z., Smith, R. L.: On the estimation and application of max-stable processes. J. Statist. Planning Inference 140 (2010), 5, 1135-1153. | DOI | MR | Zbl

Cité par Sources :