Keywords: synchronization; finite-time; noise perturbation; adaptive feedback controller
@article{10_14736_kyb_2015_1_0137,
author = {Wu, Jie and Ma, Zhi-cai and Sun, Yong-zheng and Liu, Feng},
title = {Finite-time synchronization of chaotic systems with noise perturbation},
journal = {Kybernetika},
pages = {137--149},
year = {2015},
volume = {51},
number = {1},
doi = {10.14736/kyb-2015-1-0137},
mrnumber = {3333837},
zbl = {06433836},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-1-0137/}
}
TY - JOUR AU - Wu, Jie AU - Ma, Zhi-cai AU - Sun, Yong-zheng AU - Liu, Feng TI - Finite-time synchronization of chaotic systems with noise perturbation JO - Kybernetika PY - 2015 SP - 137 EP - 149 VL - 51 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-1-0137/ DO - 10.14736/kyb-2015-1-0137 LA - en ID - 10_14736_kyb_2015_1_0137 ER -
%0 Journal Article %A Wu, Jie %A Ma, Zhi-cai %A Sun, Yong-zheng %A Liu, Feng %T Finite-time synchronization of chaotic systems with noise perturbation %J Kybernetika %D 2015 %P 137-149 %V 51 %N 1 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-1-0137/ %R 10.14736/kyb-2015-1-0137 %G en %F 10_14736_kyb_2015_1_0137
Wu, Jie; Ma, Zhi-cai; Sun, Yong-zheng; Liu, Feng. Finite-time synchronization of chaotic systems with noise perturbation. Kybernetika, Tome 51 (2015) no. 1, pp. 137-149. doi: 10.14736/kyb-2015-1-0137
[1] Aghababa, M. P., Aghababa, H. P.: A general nonlinear adaptive control scheme for finite-time synchronization of chaotic systems with uncertain parameters and nonlinear inputs. Nonlinear Dyn. 69 (2012), 1903-1914. | DOI | MR | Zbl
[2] Aghababa, M. P., Aghababa, H. P.: A novel finite-time sliding mode controller for synchronization of chaotic systems with input nonlinearity. Arab. J. Sci. Eng. 38 (2013), 3221-3232. | DOI | MR
[3] Aghababa, M. P., Khanmohammadi, S., Alizadeh, G.: Finite-time synchronization of two different chaotic systems with unknown parameters via sliding mode technique. Appl. Math. Model. 35 (2011), 3080-3091. | DOI | MR | Zbl
[4] Alvarez, G., Hernández, L., Muñoz, J., Montoya, F., Li, S. J.: Security analysis of communication system based on the synchronization of different order chaotic systems. Phys. Lett. A 345 (2005), 245-250. | DOI
[5] Argenti, F., DeAngeli, A., DelRe, E., Genesio, R., Pagni, P., Tesi, A.: Secure communications based on discrete time chaotic systems. Kybernetika 33 (1997), 41-50. | MR
[6] Beran, Z.: On characterization of the solution set in case of generalized semiflow. Kybernetika 45 (2009), 701-715. | MR | Zbl
[7] Boccaletti, S., Kurths, J., Osipov, G., Valladares, D. L., Zhou, C. S.: The synchronization of chaotic systems. Phys. Rep. 366 (2002), 1-101. | DOI | MR | Zbl
[8] Cai, N., Li, W. Q., Jing, Y. W.: Finite-time generalized synchronization of chaotic systems with different order. Nonlinear Dyn. 64 (2011), 385-393. | DOI | MR
[9] Cheng, S., Ji, J. C., Zhou, J.: Fast synchronization of directionally coupled chaotic systems. Appl. Math. Model. 37 (2013), 127-136. | DOI | MR
[10] Čelikovský, S.: Observer form of the hyperbolic-type generalized Lorenz system and its use for chaos synchronization. Kybernetika 40 (2004), 649-664. | MR | Zbl
[11] Čelikovský, S., Chen, G. R.: On the generalized Lorenz canonical form. Chaos Solition. Fract. 26 (2005), 1271-1276. | DOI | MR | Zbl
[12] Ding, K., Han, Q. L.: Effects of coupling delays on synchronization in Lur'e complex dynamical networks. Int. J. Bifur. Chaos 20 (2010), 3565-3584. | DOI | MR | Zbl
[13] Ding, K., Han, Q. L.: Master-slave synchronization criteria for horizontal platform systems using time delay feedback control. J. Sound Vibration 330 (2011), 2419-2436. | DOI
[14] Ding, K., Han, Q. L.: Master-slave synchronization of nonautonomous chaotic systems and its application to rotating pendulums. Int. J. Bifur. Chaos 22 (2012), 1250147. | DOI | Zbl
[15] Enjieu, K. H. G., Chabi, O. J. B., Woafo, P.: Synchronization dynamics in a ring of four mutually coupled biological systems. Commun. Nonlinear Sci. Numer. Simul. 13 (2008), 1361-1372. | DOI | MR
[16] Grosu, I., Padmanabanm, E., Roy, P. K., Dana, S. K.: Designing coupling for synchronization and amplification of chaos. Phys. Rev. Lett. 100 (2008), 234102. | DOI
[17] He, W. L., Cao, J. D.: Adaptive synchronization of a class of chaotic neural networks with known or unknown parameters. Phys. Lett. A 372 (2008), 408-416. | DOI | Zbl
[18] He, W. L., Du, W. L., Qian, F., Cao, J. D.: Synchronization analysis of heterogeneous dynamical networks. Neurocomputing 104 (2013), 146-154. | DOI
[19] He, W. L., Qian, F., Han, Q. L., Cao, J. D.: Synchronization error estimation and controller design for delayed Lur'e systems with parameter mismatches. IEEE Trans. Neur. Net. Lear. Systems 23 (2012), 1551-1563. | DOI
[20] Henrion, D.: Semidefinite characterisation of invariant measures for one-dimensional discrete dynamical systems. Kybernetika 48 (2012), 1089-1099. | MR | Zbl
[21] Huang, D. B.: Simple adaptive-feedback controller for identical chaos synchronization. Phys. Rev. E 71 (2005), 037203. | DOI
[22] Lasalle, J. P.: The extend of asymptotic stability. Proc. Natl. Acad. Sci. U. S. A. 46 (1960), 363-365. | DOI | MR
[23] Lasalle, J. P.: Some extensions of Liapunov's second method. IRE Trans. Circuit Theory 7 (1960), 520-527. | DOI | MR
[24] Li, H. Y., Hu, Y. A., Wang, R. Q.: Adaptive finite-time synchronization of cross-strict feedback hyperchaotic systems with parameter uncertainties. Kybernetika 49 (2013), 554-567. | MR
[25] Lin, J. S., Yan, J. J.: Adaptive synchronization for two identical generalized Lorenz chaotic systems via a single controller. Nonlinear Anal. Real. 10 (2009), 1151-1159. | DOI | MR | Zbl
[26] Liu, Y. J.: Circuit implementation and finite-time synchronization of the 4D Rabinovich hyperchaotic system. Nonlinear Dyn. 67 (2012), 89-96. | DOI | Zbl
[27] Lu, W. L., Chen, T. P.: New approach to synchronization analysis of linearly coupled ordinary differential systems. Physica D 213 (2006), 214-230. | DOI | MR | Zbl
[28] Lynnyk, V., Čelikovský, S.: On the anti-synchronization detection for the generalized Lorenz system and its applications to secure encryption. Kybernetika 46 (2010), 1-18. | MR | Zbl
[29] Mao, X.: Stochastic Differential Equations and Applications. Horwood 1997. | Zbl
[30] Ottino, J. M., Muzzio, F. J., Tjahjadi, M., Franjione, J. G., Jana, S. C., Kusch, H. A.: Chaos, symmetry, and self-similarity: exploiting order and disorder in mixing process. Science 257 (1992), 754-760. | DOI
[31] Pecora, L. M., Carroll, T. L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64 (1990), 821-824. | DOI | MR | Zbl
[32] Schiff, S. J., Jerger, K., Duong, D. H., Chang, T., Spano, M. L., Ditto, W. L.: Controlling chaos in the brain. Nature 370 (1994), 615-620. | DOI
[33] Yan, J. J., Hung, M. L., Chiang, T. Y., Yang, Y. Q.: Robust synchronization of chaotic systems via adaptive sliding mode control. Phys. Lett. A 356 (2006), 220-225. | DOI | Zbl
[34] Ma, J., Zhang, A.H., Xia, Y.F., Zhang, L.: Optimize design of adaptive synchronization controllers and parameter observers in different hyperchaotic systems. Appl. Math. Comput. 215 (2010), 3318-3326. | DOI | MR
[35] Vincent, U. E., Guo, R.: Finite-time synchronization for a class of chaotic and hyperchaotic systems via adaptive feedback controller. Phys. Lett. A 375 (2011), 2322-2326. | DOI | MR | Zbl
[36] Wang, H., Han, Z. Z., Xie, Q. Y., Zhang, W.: Finite-time synchronization of uncertain unified chaotic systems based on CLF. Nonlinear Anal. Real. 10 (2009), 2842-2849. | DOI | MR | Zbl
[37] Yang, Y. Q., Wu, X. F.: Global finite-time synchronization of a class of the non-autonomous chaotic systems. Nonlinear Dyn. 70 (2012), 197-208. | DOI | MR | Zbl
[38] Yin, J. L., Khoo, S.: Comments on ``Finite-time stability theorem of stochastic nonlinear systems''. Automatica 47 (2011), 1542-1543. | DOI | MR
[39] Yin, J. L., Khoo, S., Man, Z. H., Yu, X. H.: Finite-time stability and instability of stochastic nonlinear systems. Automatica 47 (2011), 2671-2677. | DOI | MR | Zbl
[40] Zhao, J. K., Wu, Y., Wang, Y. Y.: Generalized finite-time synchronization between coupled chaotic systems of different orders with unknown parameters. Nonlinear Dyn. 74 (2013), 479-485. | DOI | MR | Zbl
Cité par Sources :