Keywords: fractional difference systems; difference operators; stability
@article{10_14736_kyb_2015_1_0112,
author = {Wyrwas, Ma{\l}gorzata and Pawluszewicz, Ewa and Girejko, Ewa},
title = {Stability of nonlinear $h$-difference systems with $n$ fractional orders},
journal = {Kybernetika},
pages = {112--136},
year = {2015},
volume = {51},
number = {1},
doi = {10.14736/kyb-2015-1-0112},
mrnumber = {3333836},
zbl = {06433835},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-1-0112/}
}
TY - JOUR AU - Wyrwas, Małgorzata AU - Pawluszewicz, Ewa AU - Girejko, Ewa TI - Stability of nonlinear $h$-difference systems with $n$ fractional orders JO - Kybernetika PY - 2015 SP - 112 EP - 136 VL - 51 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-1-0112/ DO - 10.14736/kyb-2015-1-0112 LA - en ID - 10_14736_kyb_2015_1_0112 ER -
%0 Journal Article %A Wyrwas, Małgorzata %A Pawluszewicz, Ewa %A Girejko, Ewa %T Stability of nonlinear $h$-difference systems with $n$ fractional orders %J Kybernetika %D 2015 %P 112-136 %V 51 %N 1 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-1-0112/ %R 10.14736/kyb-2015-1-0112 %G en %F 10_14736_kyb_2015_1_0112
Wyrwas, Małgorzata; Pawluszewicz, Ewa; Girejko, Ewa. Stability of nonlinear $h$-difference systems with $n$ fractional orders. Kybernetika, Tome 51 (2015) no. 1, pp. 112-136. doi: 10.14736/kyb-2015-1-0112
[1] Abdeljawad, T., Baleanu, D.: Fractional differences and integration by parts. J. Computat. Analysis Appl. 13 (2011), 574-582. | MR | Zbl
[2] Atıcı, F. M., Eloe, P. W.: A transform method in discrete fractional calculus. Int. J. Differ, Equ. 2 (2007), 165-176. | MR
[3] Atıcı, F. M., Eloe, P. W.: Discrete fractional calculus with the nabla operator. Electron. J. Qual. Theory Differ. Equ. Spec. Ed. I(3) (2009), 1-12. | DOI | MR | Zbl
[4] Bastos, N. R. O., Ferreira, R. A. C., Torres, D. F. M.: Discrete-time fractional variational problems. Signal Processing 91 (2011), 513-524. | DOI | Zbl
[5] Bastos, N. R. O., Ferreira, R. A. C., Torres, D. F. M.: Necessary optimality conditions for fractional difference problems of the calculus of variations. Discrete Contin. Dyn. Syst. 29 (2011), 417-437. | DOI | MR | Zbl
[6] Busłowicz, M.: Stability of continuous-time linear systems described by state equation with fractional commensurate orders of derivatives. Przegląd Elektroniczby (Electrical Review) 88 (2012), 17-20.
[7] Chen, F., Luo, X., Zhou, Y.: Existence results for nonlinear fractional difference equation. Adv. Differ. Equ. 2011 (2011), 12 pages. | DOI | MR | Zbl
[8] Chen, F.: Fixed points and asymptotic stability of nonlinear fractional difference equations. Electr. J. Qual. Theory Differ. Equ. 39 (2011), 1-18. | DOI | MR
[9] Chen, F., Liu, Z.: Asymptotic stability results for nonlinear fractional difference equations. J. Appl. Math. 2012 (2012), 14 pages. | DOI | MR | Zbl
[10] Ferreira, R. A. C., Torres, D. F. M.: Fractional $h$-difference equations arising from the calculus of variations. Appl. Anal. Discrete Math. 5 (2011), 110-121. | DOI | MR | Zbl
[11] Girejko, E., Mozyrska, D.: Semi-linear fractional systems with Caputo type multi-step differences. In: Symposium on Fractional Signals and Systems, Instituto Superior de Engenharia de Coimbra, Coimbra, November 2011, pp. 79-88.
[12] Guermah, S., Djennoune, S., Bettayeb, M.: Asymptotic stability and practical stability of linear discrete-time fractional order systems. In: 3rd IFAC Workshop on Fractional Differentiation and its Applications, Ankara 2008.
[13] Holm, M. T.: The Theory of Discrete Fractional Calculus: Development and Application. PhD. Thesis, University of Nebraska - Lincoln, 2011. | MR
[14] Hu, J. B., Lu, G. P., Zhang, S. B., Zhao, L. D.: Lyapunov stability theorem about fractional system without and with delay. Commun. Nonlinear Sci. Numer. Simul. 20 (2014), 905-913. | DOI | MR
[15] Jarad, F., Abdeljawad, T., Baleanu, D., Biçen, K.: On the stability of some discrete fractional nonautonomous systems. Abstr. Appl. Anal. 2012 (2012), 9 pages. | DOI | MR | Zbl
[16] Kaczorek, T.: Selected Problems of Fractional Systems Theory. Springer-Verlag, Berlin, Heidelberg 2011. | DOI | MR | Zbl
[17] Kaczorek, T.: Practical stability of positive fractional discrete-time linear systems. Bull. Pol. Acad. Sci. Techn. Sci. 56 (2008), 313-317. | Zbl
[18] Kaczorek, T.: Fractional positive linear systems. Kybernetes 38 (2009), 1059-1078. | DOI | MR
[19] Kaczorek, T.: Reachability of cone fractional continuous-time linear systems. Int. J. Appl. Math. Comput. Sci. 19 (2009), 89-93. | DOI | MR | Zbl
[20] Kilbas, A. A., Srivastava, H. M., Trujillo, J. J.: Theory and applications of fractional differential equations. North-Holland Mathematics Studies, 204, Elsevier Science B. V., Amsterdam 2006. | DOI | MR | Zbl
[21] Li, C. P., Zhang, F. R.: A survey on the stability of fractional differential equations. Eur. Phys. J. 193 (2011), 27-47. | DOI
[22] Li, Y., Chen, Y. Q., Podlubny, I.: Mittag-Leffler stability of fractional order nonlinear dynamic systems. Automatica 45 (2009), 1965-1969. | DOI | MR | Zbl
[23] Li, Y., Chen, Y. Q., Podlubny, I.: Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability. Comput. Math. Appl. 59 (2010), 1810-1821. | DOI | MR | Zbl
[24] Margarita, R., Rogosin, S. V., Machado, J. A. Tenreiro, Trujillo, J. J.: Stability of fractional order systems. Math. Probl. Engrg. 2013 (2013), 14 pages. | DOI | MR
[25] Miller, K. S., Ross, B.: Fractional difference calculus. In: Proc. International Symposium on Univalent Functions, Fractional Calculus and their Applications, Nihon University, Koriyama 1988, pp. 139-152. | MR | Zbl
[26] Mozyrska, D., Girejko, E.: Overview of the fractional $h$-difference operators. In: Advances in Harmonic Analysis and Operator Theory: The Stefan Samko Anniversary Volume (A. Almeida, L. Castro, F.-O. Speck, eds.), Springer 2013, pp. 253-267. | DOI | MR
[27] Mozyrska, D., Girejko, E., Wyrwas, M.: Comparision of $h$-difference fractional operators. In: Advances in the Theory and Applications of non-integer Order Systems (W. Mitkowski, J. Kacprzyk, J. Baranowski, eds.), Lect. Notes Electr. Engrg. 257, Springer International Publishing, Switzerland 2013, pp. 191-197. | DOI | MR
[28] Mozyrska, D., Pawluszewicz, E.: Local controllability of nonlinear discrete-time fractional order systems. Bull. Pol. Acad. Sci. Techn. Sci. 61 (2013), 251-256. | DOI
[29] Ostalczyk, P.: Equivalent descriptions of a discrete time fractional order linear system and its stability domains. Int. J. Appl. Math. Comput. Sci. 22 (2012), 533-538. | MR | Zbl
[30] Petráš, I.: Stability of fractional-order systems with rational orders: a survey. Fract. Calc. Appl. Anal. 12 (2009), 269-298. | MR | Zbl
[31] Petráš, I.: Fractional-Order Nonlinear Systems: Modelling, Analysis and Simulation. Springer, Dordrecht 2011. | DOI
[32] Podlubny, I.: Fractional Differential Equations. Mathematics in Sciences and Engineering. Academic Press, San Diego 1999. | MR
[33] Tavazoei, M. S., Haeri, M.: A note on the stability of fractional order systems. Math. Comput. Simul. 79 (2009), 1566-1576. | DOI | MR | Zbl
[34] Trigeassou, J. C., Maamri, N., Sabatier, J., Oustaloup, A.: A Lyapunov approach to the stability of fractional differential equations. Signal Process. 91 (2011), 437-445. | DOI | Zbl
[35] Wyrwas, M., Girejko, E., Mozyrska, D., Pawluszewicz, E.: Stability of fractional difference systems with two orders. In: Advances in the Theory and Applications of Non-integer Order Systems (W. Mitkowski, J. Kacprzyk, and J. Baranowski, eds.), Lect. Notes Electr. Engrg. 257, Springer International Publishing, Switzerland 2013, pp. 41-52. | DOI | MR | Zbl
[36] Zhao, L. D., Hu, J. B., Fang, J. A., Zhang, W. B.: Studying on the stability of fractional-order nonlinear system. Nonlinear Dynamics 70 (2012), 475-479. | DOI | MR | Zbl
Cité par Sources :