A separation principle for the stabilization of a class of time delay nonlinear systems
Kybernetika, Tome 51 (2015) no. 1, pp. 99-111 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we establish a separation principle for a class of time-delay nonlinear systems satisfying some relaxed triangular-type condition. Under delay independent conditions, we propose a nonlinear time-delay observer to estimate the system states, a state feedback controller and we prove that the observer-based controller stabilizes the system.
In this paper, we establish a separation principle for a class of time-delay nonlinear systems satisfying some relaxed triangular-type condition. Under delay independent conditions, we propose a nonlinear time-delay observer to estimate the system states, a state feedback controller and we prove that the observer-based controller stabilizes the system.
DOI : 10.14736/kyb-2015-1-0099
Classification : 93B17, 93C10, 93D15, 93D20
Keywords: delay system; output feedback stabilization; nonlinear observer; separation principle
@article{10_14736_kyb_2015_1_0099,
     author = {Benabdallah, Amel},
     title = {A separation principle for the stabilization of a class of time delay nonlinear systems},
     journal = {Kybernetika},
     pages = {99--111},
     year = {2015},
     volume = {51},
     number = {1},
     doi = {10.14736/kyb-2015-1-0099},
     mrnumber = {3333835},
     zbl = {06433834},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-1-0099/}
}
TY  - JOUR
AU  - Benabdallah, Amel
TI  - A separation principle for the stabilization of a class of time delay nonlinear systems
JO  - Kybernetika
PY  - 2015
SP  - 99
EP  - 111
VL  - 51
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-1-0099/
DO  - 10.14736/kyb-2015-1-0099
LA  - en
ID  - 10_14736_kyb_2015_1_0099
ER  - 
%0 Journal Article
%A Benabdallah, Amel
%T A separation principle for the stabilization of a class of time delay nonlinear systems
%J Kybernetika
%D 2015
%P 99-111
%V 51
%N 1
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-1-0099/
%R 10.14736/kyb-2015-1-0099
%G en
%F 10_14736_kyb_2015_1_0099
Benabdallah, Amel. A separation principle for the stabilization of a class of time delay nonlinear systems. Kybernetika, Tome 51 (2015) no. 1, pp. 99-111. doi: 10.14736/kyb-2015-1-0099

[1] Atassi, A. N., Khalil, H. K.: A separation principle for the stabilization of a class of nonlinear systems. IEEE Trans. Automat. Control 44 (1999), 1672-1687. | DOI | MR | Zbl

[2] Atassi, A. N., Khalil, H. K.: Separation results for the stabilization of nonlinear systems using different high-gain observer designs. Systems Control Lett. 39 (2000), 183-191. | DOI | MR | Zbl

[3] Boyd, S., Ghaoui, L. El, Feron, E., Balakrishnan, V.: Linear matrix inequalities in systems and control theory. In: SIAM Stud. Appl. Math. 15 (1994). | DOI | MR

[4] Choi, H. L., Lim, J. T.: Global exponential stabilization of a class of nonlinear systems by output feedback. IEEE Trans. Automat. Control 50 (2005), 2, 255-257. | DOI | MR

[5] Germani, A., Manes, C., Pepe, P.: Local asymptotic stability for nonlinear state feedback delay systems. Kybernetika 36 (2000), 31-42. | MR | Zbl

[6] Germani, A., Manes, C., Pepe, P.: An asymptotic state observer for a class of nonlinear delay systems. Kybernetika 37 (2001), 459-478. | MR | Zbl

[7] Germani, A., Manes, C., Pepe, P.: Input-output linearization with delay cancellation for nonlinear delay systems: the problem of the internal stability. Int. J. Robust Nonlinear Control 13 (2003), 909-937. | DOI | MR | Zbl

[8] Germani, A., Manes, C., Pepe, P.: Separation theorems for a class of retarded nonlinear systems. In: IFAC-Papers OnLine, Workshop on Time-Delay Systems, Praha 2010. | DOI

[9] Germani, A., Manes, C., Pepe, P.: Observer-based stabilizing control for a class of nonlinear retarded systems. Lect. Notes Control Inform. Sci. 423 (2012), 331-342. | DOI | MR | Zbl

[10] Hale, J. K., Lunel, S. M.: Introduction to Functional Differential Equations. Applied Mathematical Sciences. Springer-Verlag, New York 1991. | DOI

[11] Ibrir, S.: Observer-based control of a class of time-delay nonlinear systems having triangular structure. Automatica 47 (2011), 388-394. | DOI | MR | Zbl

[12] Jankovic, M.: Recursive predictor design for state and output feedback controllers for linear time delay systems. Automatica 46 (2010), 510-517. | DOI | MR | Zbl

[13] Khalil, H. K.: Nonlinear Systems. Prentice-Hall, Upper Saddle River, NJ 2001. | DOI | Zbl

[14] Kwon, O. M., Park, J. H., Lee, S. M., Won, S. C.: LMI optimization approach to observer-based controller design of uncertain time-delay systems via delayed feedback. J. Optim. Theory Appl. 128 (2006), 103-117. | DOI | MR | Zbl

[15] Li, X., Souza, C. de: Output feedback stabilization of linear time-delay systems. Stability and control of time-delay systems. Lect. Notes Control Inform. Sci. (1998), 241-258. | DOI | MR

[16] Marquez, L. A., Moog, C., Villa, M. Velasco: Observability and observers for nonlinear systems with time delay. Kybernetika 38 (2002), 445-456. | MR

[17] Pepe, P., Karafyllis, I.: Converse Lyapunov-Krasovskii theorems for systems described by neutral functional differential equations in Hale's form. Int. J. Control 86 (2013), 232-243. | DOI | MR | Zbl

[18] Qian, C., W.Lin: Output feedback control of a class of nonlinear systems: A non-separation principle paradigm. IEEE Trans. Automat. Control 47 (2002), 1710-1715. | DOI | MR

[19] Sun, Y. J.: Global stabilization of uncertain systems with time-varying delays via dynamic observer-based output feedback. Linear Algebra Appl. 353 (2002), 91-105. | DOI | MR

[20] Thuan, M. V., Phat, V. N., Trinh, H.: Observer-based controller design of time-delay systems with an interval time-varying delay. Int. J. Appl. Math. Comput. Sci. 22 (2012), 4, 921-927. | DOI | MR | Zbl

[21] Tsinias, J.: A theorem on global stabilization of nonlinear systems by linear feedback. Systems Control Lett. 17 (1991), 357-362. | DOI | MR | Zbl

[22] Wang, Z., Goodall, D. P., Burnham, K. J.: On designing observers for time delay systems with nonlinear disturbances. Int. J. Control 75 (2002), 803-811. | DOI | MR | Zbl

[23] Zhang, X., and, Z. Cheng, Wang, X. P.: Output feedback stabilization of nonlinear systems with delayed output. In: Proc. American Control Conference, Portland 2005, pp. 4486-4490. | DOI

[24] Zhou, L., Xiao, X., Lu, G.: Observers for a class of nonlinear systems with time delay. Asian J. Control 11 (2009), 6, 688-693. | DOI | MR

Cité par Sources :