Robust Observer-based control of switched nonlinear systems with quantized and sampled output
Kybernetika, Tome 51 (2015) no. 1, pp. 59-80
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper deals with the robust stabilization of a class of nonlinear switched systems with non-vanishing bounded perturbations. The nonlinearities in the systems satisfy a quasi-Lipschitz condition. An observer-based linear-type switching controller with quantized and sampled output signal is considered. Using a dwell-time approach and an extended version of the invariant ellipsoid method (IEM) sufficient conditions for stability in a practical sense are derived. These conditions are represented as Bilinear Matrix Inequalities (BMI's). Finally, two examples are given to verify the efficiency of the proposed method.
This paper deals with the robust stabilization of a class of nonlinear switched systems with non-vanishing bounded perturbations. The nonlinearities in the systems satisfy a quasi-Lipschitz condition. An observer-based linear-type switching controller with quantized and sampled output signal is considered. Using a dwell-time approach and an extended version of the invariant ellipsoid method (IEM) sufficient conditions for stability in a practical sense are derived. These conditions are represented as Bilinear Matrix Inequalities (BMI's). Finally, two examples are given to verify the efficiency of the proposed method.
DOI : 10.14736/kyb-2015-1-0059
Classification : 93C30, 93C57, 93C62, 93D21
Keywords: switched systems; robust stabilization; quantization
@article{10_14736_kyb_2015_1_0059,
     author = {Perez, Carlos and Mera, Manuel},
     title = {Robust {Observer-based} control of switched nonlinear systems with quantized and sampled output},
     journal = {Kybernetika},
     pages = {59--80},
     year = {2015},
     volume = {51},
     number = {1},
     doi = {10.14736/kyb-2015-1-0059},
     mrnumber = {3333833},
     zbl = {06433832},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-1-0059/}
}
TY  - JOUR
AU  - Perez, Carlos
AU  - Mera, Manuel
TI  - Robust Observer-based control of switched nonlinear systems with quantized and sampled output
JO  - Kybernetika
PY  - 2015
SP  - 59
EP  - 80
VL  - 51
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-1-0059/
DO  - 10.14736/kyb-2015-1-0059
LA  - en
ID  - 10_14736_kyb_2015_1_0059
ER  - 
%0 Journal Article
%A Perez, Carlos
%A Mera, Manuel
%T Robust Observer-based control of switched nonlinear systems with quantized and sampled output
%J Kybernetika
%D 2015
%P 59-80
%V 51
%N 1
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-1-0059/
%R 10.14736/kyb-2015-1-0059
%G en
%F 10_14736_kyb_2015_1_0059
Perez, Carlos; Mera, Manuel. Robust Observer-based control of switched nonlinear systems with quantized and sampled output. Kybernetika, Tome 51 (2015) no. 1, pp. 59-80. doi: 10.14736/kyb-2015-1-0059

[1] Aihara, K., Suzuki, H.: Theory of hybrid dynamical systems and its applications to biological and medical systems. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 368 (2010), 4893-4914. | DOI | Zbl

[2] Azhmyakov, V.: On the geometric aspects of the invariant ellipsoid method: Application to the robust control design. In: Proc. 50th IEEE Conference on Decision and Control and demonstratedntrol Conference, Orlando 2011, pp. 1353-1358. | DOI

[3] Balluchi, A., Benvenuti, L., Benedetto, M. D. Di, Sangiovanni-Vincentelli, A.: The design of dynamical observers for hybrid systems: Theory and application to an automotive control problem. Automatica 49 (2013), 915-925. | DOI | MR | Zbl

[4] Yazdi, M. Barkhordari, Jahed-Motlagh, M. R.: Stabilization of a CSTR with two arbitrarily switching modes using modal state feedback linearization. Chemical Engrg. J. 155 (2009), 838-843. | DOI

[5] Blanchini, F., Miani, S.: Set-Theoretic Methods in Control. Birkhauser, Boston 2008. | DOI | MR | Zbl

[6] Branicky, M.: Multiple Lyapunov functions and other analysis tools for switched and hybrid systems. IEEE Trans. Automat. Control 57 (1998), 3038-3050. | DOI | MR | Zbl

[7] Donkers, M. C. F., Hemmels, W. P. M. H., Wouw, N. Van den, Hetel, L.: Stability analysis of networked control systems using a switched linear systems approach. IEEE Trans. Automat. Control 56 (2011), 9, 2101-2115. | DOI | MR

[8] Filipov, A. F.: Differential Equations with Discontinuous Right-hand Side. Kluwer, Dordrecht 1988.

[9] Fridman, E.: Descriptor discretized Lyapunov functional method: Analysis and design. IEEE Trans. Automat. Control 51 (2006), 890-897. | DOI | MR

[10] Fridman, E., Niculescu, S. I.: On complete Lyapunov-Krasovskii functional techniques for uncertain systems with fast-varying delays. Int. J. Robust Nonlinear Control 18 (2008), 3, 364-374. | DOI | MR | Zbl

[11] Fridman, E., Dambrine, M.: Control under quantization, saturation and delay: An LMI approach. Automatica 45 (2009), 10, 2258-2264. | DOI | MR | Zbl

[12] Fu, M., Xie, L.: The sector bound approach to quantized feedback control. IEEE Trans. Automat. Control 50 (2005), 11, 1698-1711. | DOI | MR

[13] Gao, H., Chen, T.: A new approach to quantized feedback control systems. Automatica 44 (2008), 2, 534-542. | DOI | MR | Zbl

[14] Geromel, J. C., Colaneri, P.: Stability and stabilization of continuous-time switched linear systems. SIAM J. Control Optim. 45 (2006), 5, 1915-1930. | DOI | MR | Zbl

[15] Glover, J. D., Schweppe, F. C.: Control of linear dynamic systems with set constrained disturbance. IEEE Trans. Automat. Control 16 (1971), 5, 411-423. | DOI | MR

[16] Gonzalez-Garcia, S., Polyakov, A., Poznyak, A.: Linear feedback spacecraft stabilization using the method of invariant ellipsoids. In: Proc. 41st Southeastern Symposium on System Theory 2009, pp. 195-198. | DOI

[17] Gonzalez-Garcia, S., Polyakov., A., Poznyak, A.: Output linear controller for a class of nonlinear systems using the invariant ellipsoid technique. In: American Control Conference, St. Louis 2009, pp. 1160-1165. | DOI

[18] Hartman, P.: Ordinary Differential Equations. Second edition. Society for Industrial and Applied Mathematics, Philadelphia 2002. | DOI | MR

[19] Hespanha, J. P., Morse, A. S.: Stability of switched systems with average dwell-time. In: Proc. 38th IEEE Conference on Decision and Control, Phoenix 1999, pp. 2655-2660. | DOI

[20] Kruszewski, A., Jiang, W. J., Fridman, E., Richard, J. P., Toguyeni, A.: A switched system approach to exponential stabilization through communication network. IEEE Trans. Control Systems Technol. 20 (2012), 887-900. | DOI

[21] Khurzhanski, A. B., Varaiya, P.: Ellipsoidal techniques for reachability under state constraints. SIAM J. Control Optim. 45 (2006), 1369-1394. | DOI | MR

[22] Li, J., Liu, Y., Mei, R., Li, B.: Robust H$_\infty$ output feedback control of discrete time switched systems via a new linear matrix inequality formulation. In: Proc. 8th World Congress on Intelligent Control and Automation 2010, pp. 3377-3382. | DOI

[23] Liberzon, D.: Switching in systems and control. In: Systems & Control. Foundations & Applications, Birkhauser, Boston 2003. | DOI | MR | Zbl

[24] Liberzon, D.: Stabilizing a switched linear system by sampled-data quantized feedback. In: Proc. 50th IEEE Conference on Decision and Control and European Control Conference, Orlando 2011, pp. 8321-8328. | DOI

[25] Liberzon, D.: Finite data-rate feedback stabilization of switched and hybrid linear systems. Automatica 50 (2014), 2, 409-420. | DOI | MR

[26] Lin, H., Antsaklis, P. J.: Stability and stabilizability of switched linear systems: A survey of recent results. IEEE Trans. Automat. Control 54 (2009), 308-322. | DOI | MR

[27] Liu, Y., Niu, Y., Ho, D.: Sliding mode control for linear uncertain switched systems. In: Proc. 31st Chinese Control Conference, Hefei 2012, pp. 3177-3181.

[28] Liu, T., Jiang, Z. P., Hill, D. J.: Small-gain based output-feedback controller design for a class of nonlinear systems with actuator dynamic quantization. IEEE Trans. Automat. Control 57 (2012),5, 1326-1332. | DOI | MR

[29] Liu, T., Jiang, Z. P., Hill, D. J.: A sector bound approach to feedback control of nonlinear systems with state quantization. Automatica 48 (2012), 1, 145-152. | DOI | MR | Zbl

[30] Lozada-Castillo, N. B., Alazki, H., Poznyak, A. S.: Robust control design through the attractive ellipsoid technique for a class of linear stochastic models with multiplicative and additive noises. IMA J. Math. Control Inform. 30 (2013), 1-19. | DOI | MR | Zbl

[31] Nair, G. N., Fagnani, F., Zampieri, S., Evans, R. J.: Feedback control under data rate constraints: an overview. Proc. of the IEEE 95 (2007), 108-137. | DOI

[32] Nie, H., Song, Z., Li, P., Zhao, J.: Robust H$_\infty$ dynamic output feedback control for uncertain discrete-time switched systems with time-varying delays. In: Proc. 2008 Chinese Control and Decision Conference, Yantai-Shandong 2008, pp. 4381-4386. | DOI

[33] Ordaz, P., Alazki, H., Poznyak, A.: A sample-time adjusted feedback for robust bounded output stabilization. Kybernetika 49 (2013), 6, 911-934. | MR | Zbl

[34] Peng, C., Tian, Y. C.: Networked H$_\infty$ control of linear systems with state quantization. Inform. Sci. 177 (2007), 5763-5774. | DOI | MR | Zbl

[35] Polyak, B. T., Nazin, S. A., Durieu, C., Walter, E.: Ellipsoidal parameter or state estimation under model uncertainty. Automatica 40 (2004), 1171-1179. | DOI | MR | Zbl

[36] Polyak, B. T., Topunov, M. V.: Suppression of bounded exogenous disturbances: Output feedback. Autom. Remote Control 69 (2008), 801-818. | DOI | MR | Zbl

[37] Poznyak, A. S.: Advanced Mathematical Tools for Automatic Control Engineers: Deterministic Techniques. Elsevier, Amsterdam 2008. | DOI | MR

[38] Poznyak, A. S., Azhmyakov, V., Mera, M.: Practical output feedback stabilization for a class of continuous-time dynamic system under sample-data outputs. Int. J. Control 84 (2011), 1408-1416. | DOI | MR

[39] Shorten, R., Wirth, F., Manson, O., Wulff, K., King, C.: Stability criteria for switched and hybrid systems. SIAM Rev. 49 (2007), 545-592. | DOI | MR

[40] Sun, Z., Ge, S. S.: Stability Theory of Switched Dynamical Systems, Communications and Control Engineering. Springer-Verlag, London 2011. | DOI | MR

[41] Tatikonda, S., Mitter, S.: Control under communication constraints. IEEE Trans. Automat. Control 49 (2004), 1056-1068. | DOI | MR

[42] Wang, Y., Gupta, V., Antsaklis, P.: On passivity of a class of discrete-time switched nonlinear systems. IEEE Trans. Automat. Control 59 (2014), 692-702. | DOI | MR

[43] Yanyan, L., Jun, Z., Dimirovski, G.: Passivity, feedback equivalence and stability of switched nonlinear systems using multiple storage functions. In: Proc. 30th Chinese Control Conference, Yantai 2011, pp. 1805-1809.

[44] Zhang, W. A., Yu, L.: Output feedback stabilization of networked control systems with packet dropouts. IEEE Trans. Automat. Control 52 (2007), 1705-1710. | DOI | MR

Cité par Sources :