Keywords: nonlinear control system; state and output transformations; observer form; differential one-form
@article{10_14736_kyb_2015_1_0036,
author = {Kaparin, Vadim and Kotta, \"Ulle},
title = {Transformation of nonlinear state equations into the observer form: {Necessary} and sufficient conditions in terms of one-forms},
journal = {Kybernetika},
pages = {36--58},
year = {2015},
volume = {51},
number = {1},
doi = {10.14736/kyb-2015-1-0036},
mrnumber = {3333832},
zbl = {06433831},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-1-0036/}
}
TY - JOUR AU - Kaparin, Vadim AU - Kotta, Ülle TI - Transformation of nonlinear state equations into the observer form: Necessary and sufficient conditions in terms of one-forms JO - Kybernetika PY - 2015 SP - 36 EP - 58 VL - 51 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-1-0036/ DO - 10.14736/kyb-2015-1-0036 LA - en ID - 10_14736_kyb_2015_1_0036 ER -
%0 Journal Article %A Kaparin, Vadim %A Kotta, Ülle %T Transformation of nonlinear state equations into the observer form: Necessary and sufficient conditions in terms of one-forms %J Kybernetika %D 2015 %P 36-58 %V 51 %N 1 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-1-0036/ %R 10.14736/kyb-2015-1-0036 %G en %F 10_14736_kyb_2015_1_0036
Kaparin, Vadim; Kotta, Ülle. Transformation of nonlinear state equations into the observer form: Necessary and sufficient conditions in terms of one-forms. Kybernetika, Tome 51 (2015) no. 1, pp. 36-58. doi: 10.14736/kyb-2015-1-0036
[1] Besançon, G.: On output transformations for state linearization up to output injection. IEEE Trans. Automat. Control 44 (1999), 10, 1975-1981. | DOI | MR | Zbl
[2] Bestle, D., Zeitz, M.: Canonical form observer design for non-linear time-variable systems. Int. J. Control 38 (1983), 2, 419-431. | DOI
[3] Boutat, D., Benali, A., Hammouri, H., Busawon, K.: New algorithm for observer error linearization with a diffeomorphism on the outputs. Automatica 45 (2009), 10, 2187-2193. | DOI | MR | Zbl
[4] Chiasson, J.: Nonlinear differential-geometric techniques for control of a series DC motor. IEEE Trans. Control Systems Technol. 2 (1994), 1, 35-42. | DOI
[5] Conte, G., Moog, C. H., Perdon, A. M.: Algebraic Methods for Nonlinear Control Systems. Theory and Applications. Second edition. Springer-Verlag, London 2007. | DOI | MR
[6] Glumineau, A., Moog, C. H., Plestan, F.: New algebro-geometric conditions for the linearization by input-output injection. IEEE Trans. Automat. Control 41 (1996), 4, 598-603. | DOI | MR | Zbl
[7] Guay, M.: Observer linearization by output-dependent time-scale transformations. IEEE Trans. Automat. Control 47 (2002), 10, 1730-1735. | DOI | MR
[8] Halás, M., Kotta, Ü: A transfer function approach to the realisation problem of nonlinear systems. Int. J. Control 85 (2012), 3, 320-331. | DOI | MR | Zbl
[9] Technology, Institute of Cybernetics at Tallinn University of: NLControl website. (2014). DOI
[10] Isidori, A.: Nonlinear Control Systems: An Introduction. Lect. Notes Control Inform. Sci. 72, Springer-Verlag, Berlin 1985. | DOI | MR | Zbl
[11] Johnson, W. P.: The curious history of Faà di Bruno's formula. Amer. Math. Monthly 109 (2002), 3, 217-234. | DOI | MR | Zbl
[12] Jouan, P.: Immersion of nonlinear systems into linear systems modulo output injection. SIAM J. Control Optim. 41 (2003), 6, 1756-1778. | DOI | MR | Zbl
[13] Kaparin, V., Kotta, Ü.: Necessary and sufficient conditions in terms of differential-forms for linearization of the state equations up to input-output injections. In: UKACC International Conference on CONTROL 2010 (K. J. Burnham and V. E. Ersanilli, eds.), IET, Coventry 2010, pp. 507-511. | DOI
[14] Kaparin, V., Kotta, Ü.: Theorem on the differentiation of a composite function with a vector argument. Proc. Est. Acad. Sci. 59 (2010), 3, 195-200. | DOI | MR | Zbl
[15] Krener, A. J., Isidori, A.: Linearization by output injection and nonlinear observers. Systems Control Lett. 3 (1983), 1, 47-52. | DOI | MR | Zbl
[16] Krener, A. J., Respondek, W.: Nonlinear observers with linearizable error dynamics. SIAM J. Control Optim. 23 (1985), 2, 197-216. | DOI | MR | Zbl
[17] Mullari, T., Kotta, Ü.: Transformation the nonlinear system into the observer form: Simplification and extension. Eur. J. Control 15 (2009), 2, 177-183. | DOI | MR | Zbl
[18] Noh, D., Jo, N. H., Seo, J. H.: Nonlinear observer design by dynamic observer error linearization. IEEE Trans. Automat. Control 49 (2004), 10, 1746-1750. | DOI | MR
[19] Respondek, W., Pogromsky, A., Nijmeijer, H.: Time scaling for observer design with linearizable error dynamics. Automatica 40 (2004), 2, 277-285. | DOI | MR | Zbl
[20] Tõnso, M., Rennik, H., Kotta, Ü.: WebMathematica-based tools for discrete-time nonlinear control systems. Proc. Est. Acad. Sci. 58 (2009), 4, 224-240. | DOI | MR | Zbl
Cité par Sources :