A study on global stabilization of periodic orbits in discrete-time chaotic systems by using symbolic dynamics
Kybernetika, Tome 51 (2015) no. 1, pp. 4-19
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this report, a control method for the stabilization of periodic orbits for a class of one- and two-dimensional discrete-time systems that are topologically conjugate to symbolic dynamical systems is proposed and applied to a population model in an ecosystem and the Smale horseshoe map. A periodic orbit is assigned as a target by giving a sequence in which symbols have periodicity. As a consequence, it is shown that any periodic orbits can be globally stabilized by using arbitrarily small control inputs. This work is a new attempt to systematically design a control system based on symbolic dynamics in the sense that one estimates the magnitude of control inputs and analyzes the Lyapunov stability.
In this report, a control method for the stabilization of periodic orbits for a class of one- and two-dimensional discrete-time systems that are topologically conjugate to symbolic dynamical systems is proposed and applied to a population model in an ecosystem and the Smale horseshoe map. A periodic orbit is assigned as a target by giving a sequence in which symbols have periodicity. As a consequence, it is shown that any periodic orbits can be globally stabilized by using arbitrarily small control inputs. This work is a new attempt to systematically design a control system based on symbolic dynamics in the sense that one estimates the magnitude of control inputs and analyzes the Lyapunov stability.
DOI : 10.14736/kyb-2015-1-0004
Classification : 37B10, 37N35, 74H65, 93D15
Keywords: symbolic dynamics; chaos control; global stability
@article{10_14736_kyb_2015_1_0004,
     author = {Suzuki, Masayasu and Sakamoto, Noboru},
     title = {A study on global stabilization of periodic orbits in discrete-time chaotic systems by using symbolic dynamics},
     journal = {Kybernetika},
     pages = {4--19},
     year = {2015},
     volume = {51},
     number = {1},
     doi = {10.14736/kyb-2015-1-0004},
     mrnumber = {3333830},
     zbl = {06433829},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-1-0004/}
}
TY  - JOUR
AU  - Suzuki, Masayasu
AU  - Sakamoto, Noboru
TI  - A study on global stabilization of periodic orbits in discrete-time chaotic systems by using symbolic dynamics
JO  - Kybernetika
PY  - 2015
SP  - 4
EP  - 19
VL  - 51
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-1-0004/
DO  - 10.14736/kyb-2015-1-0004
LA  - en
ID  - 10_14736_kyb_2015_1_0004
ER  - 
%0 Journal Article
%A Suzuki, Masayasu
%A Sakamoto, Noboru
%T A study on global stabilization of periodic orbits in discrete-time chaotic systems by using symbolic dynamics
%J Kybernetika
%D 2015
%P 4-19
%V 51
%N 1
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-1-0004/
%R 10.14736/kyb-2015-1-0004
%G en
%F 10_14736_kyb_2015_1_0004
Suzuki, Masayasu; Sakamoto, Noboru. A study on global stabilization of periodic orbits in discrete-time chaotic systems by using symbolic dynamics. Kybernetika, Tome 51 (2015) no. 1, pp. 4-19. doi: 10.14736/kyb-2015-1-0004

[1] Birkhoff, G. D.: Dynamical Systems. American Mathematical Society, New York 1927. | DOI | MR | Zbl

[2] Bollt, E. M., Dolnik, M.: Encoding information in chemical chaos by controlling symbolic dynamics. Phys. Rev. E 55 (1997), 6, 6404-6413. | DOI

[3] Corron, N. J., Pethel, S. D.: Experimental targeting of chaos via controlled symbolic dynamics. Phys. Lett. A 313 (2003), 192-197. | DOI | MR

[4] Glenn, C. M., Hayes, S.: Targeting Regions of Chaotic Attractors Using Small Perturbation Control of Symbolic Dynamics. Army Research Laboratory Adelphi MD 1996, No. ARL-TR-903.

[5] Hadamard, J.: Les surfaces à curbures opposés et leurs lignes géodesiques. J. Math. Pure Appl. 5 (1898), 27-73.

[6] Hayes, S., Grebogi, C., Ott, E.: Communicating with chaos. Phys. Rev. Lett. 70 (1993), 20, 3031-3034. | DOI

[7] Lai, Y.-C.: Controlling chaos. Comput. Phys. 8 (1994), 1, 62-67. | DOI | Zbl

[8] Levinson, N.: A second order differential equation with singular solutions. Ann. of Math. (2) 50 (1949), 1, 126-153. | DOI | MR | Zbl

[9] Lind, D.: Multi-dimensional symbolic dynamics. In: Symbolic Dynamics ans its Applications (S. G. Williams, ed.), Proc. Symp. Appl. Math. 60 (2004), 61-80. | DOI | MR | Zbl

[10] May, R. M.: Simple mathematical models with very complicated dynamics. Nature 261 (1976), 459-467. | DOI | Zbl

[11] Morse, M., Hedlund, G. A.: Symbolic dynamics. Amer. J. Math. 60 (1938), 815-866. | DOI | MR | Zbl

[12] Moser, J.: Stable and Random Motions in Dynamical Systems. Princeton University Press, 1973. | MR | Zbl

[13] Ott, E., Grebogi, C., Yorke, J. A.: Controlling chaos. Phys. Rev. Lett. 64 (1990), 11, 1196-1199. | DOI | MR | Zbl

[14] Robinson, C.: Dynamical Systems: Stability, Symbolic Dynamics, and Chaos. CRC Press, 1999. | MR | Zbl

[15] Robinson, E. A., Jr.: Symbolic dynamics and tiling of ${\mathbb{R}}^d$. In: Symbolic Dynamics ans its Applications (S. G. Williams, ed.), Proc. Symp. Appl. Math. 60 (2002), 81-120. | DOI | MR

[16] Smale, S.: Diffeomorphism with many periodic points. In: Differential and Combinatorial Topology (S. S. Cairns, ed.), Princeton University Press 1963, pp. 63-80. | MR

[17] Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer, 1991. | DOI | MR | Zbl

Cité par Sources :