Keywords: symbolic dynamics; chaos control; global stability
@article{10_14736_kyb_2015_1_0004,
author = {Suzuki, Masayasu and Sakamoto, Noboru},
title = {A study on global stabilization of periodic orbits in discrete-time chaotic systems by using symbolic dynamics},
journal = {Kybernetika},
pages = {4--19},
year = {2015},
volume = {51},
number = {1},
doi = {10.14736/kyb-2015-1-0004},
mrnumber = {3333830},
zbl = {06433829},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-1-0004/}
}
TY - JOUR AU - Suzuki, Masayasu AU - Sakamoto, Noboru TI - A study on global stabilization of periodic orbits in discrete-time chaotic systems by using symbolic dynamics JO - Kybernetika PY - 2015 SP - 4 EP - 19 VL - 51 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-1-0004/ DO - 10.14736/kyb-2015-1-0004 LA - en ID - 10_14736_kyb_2015_1_0004 ER -
%0 Journal Article %A Suzuki, Masayasu %A Sakamoto, Noboru %T A study on global stabilization of periodic orbits in discrete-time chaotic systems by using symbolic dynamics %J Kybernetika %D 2015 %P 4-19 %V 51 %N 1 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-1-0004/ %R 10.14736/kyb-2015-1-0004 %G en %F 10_14736_kyb_2015_1_0004
Suzuki, Masayasu; Sakamoto, Noboru. A study on global stabilization of periodic orbits in discrete-time chaotic systems by using symbolic dynamics. Kybernetika, Tome 51 (2015) no. 1, pp. 4-19. doi: 10.14736/kyb-2015-1-0004
[1] Birkhoff, G. D.: Dynamical Systems. American Mathematical Society, New York 1927. | DOI | MR | Zbl
[2] Bollt, E. M., Dolnik, M.: Encoding information in chemical chaos by controlling symbolic dynamics. Phys. Rev. E 55 (1997), 6, 6404-6413. | DOI
[3] Corron, N. J., Pethel, S. D.: Experimental targeting of chaos via controlled symbolic dynamics. Phys. Lett. A 313 (2003), 192-197. | DOI | MR
[4] Glenn, C. M., Hayes, S.: Targeting Regions of Chaotic Attractors Using Small Perturbation Control of Symbolic Dynamics. Army Research Laboratory Adelphi MD 1996, No. ARL-TR-903.
[5] Hadamard, J.: Les surfaces à curbures opposés et leurs lignes géodesiques. J. Math. Pure Appl. 5 (1898), 27-73.
[6] Hayes, S., Grebogi, C., Ott, E.: Communicating with chaos. Phys. Rev. Lett. 70 (1993), 20, 3031-3034. | DOI
[7] Lai, Y.-C.: Controlling chaos. Comput. Phys. 8 (1994), 1, 62-67. | DOI | Zbl
[8] Levinson, N.: A second order differential equation with singular solutions. Ann. of Math. (2) 50 (1949), 1, 126-153. | DOI | MR | Zbl
[9] Lind, D.: Multi-dimensional symbolic dynamics. In: Symbolic Dynamics ans its Applications (S. G. Williams, ed.), Proc. Symp. Appl. Math. 60 (2004), 61-80. | DOI | MR | Zbl
[10] May, R. M.: Simple mathematical models with very complicated dynamics. Nature 261 (1976), 459-467. | DOI | Zbl
[11] Morse, M., Hedlund, G. A.: Symbolic dynamics. Amer. J. Math. 60 (1938), 815-866. | DOI | MR | Zbl
[12] Moser, J.: Stable and Random Motions in Dynamical Systems. Princeton University Press, 1973. | MR | Zbl
[13] Ott, E., Grebogi, C., Yorke, J. A.: Controlling chaos. Phys. Rev. Lett. 64 (1990), 11, 1196-1199. | DOI | MR | Zbl
[14] Robinson, C.: Dynamical Systems: Stability, Symbolic Dynamics, and Chaos. CRC Press, 1999. | MR | Zbl
[15] Robinson, E. A., Jr.: Symbolic dynamics and tiling of ${\mathbb{R}}^d$. In: Symbolic Dynamics ans its Applications (S. G. Williams, ed.), Proc. Symp. Appl. Math. 60 (2002), 81-120. | DOI | MR
[16] Smale, S.: Diffeomorphism with many periodic points. In: Differential and Combinatorial Topology (S. S. Cairns, ed.), Princeton University Press 1963, pp. 63-80. | MR
[17] Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer, 1991. | DOI | MR | Zbl
Cité par Sources :