Scenario generation with distribution functions and correlations
Kybernetika, Tome 50 (2014) no. 6, pp. 1049-1064
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we present a method for generating scenarios for two-stage stochastic programs, using multivariate distributions specified by their marginal distributions and the correlation matrix. The margins are described by their cumulative distribution functions and we allow each margin to be of different type. We demonstrate the method on a model from stochastic service network design and show that it improves the stability of the scenario-generation process, compared to both sampling and a method that matches moments and correlations.
In this paper, we present a method for generating scenarios for two-stage stochastic programs, using multivariate distributions specified by their marginal distributions and the correlation matrix. The margins are described by their cumulative distribution functions and we allow each margin to be of different type. We demonstrate the method on a model from stochastic service network design and show that it improves the stability of the scenario-generation process, compared to both sampling and a method that matches moments and correlations.
DOI : 10.14736/kyb-2014-6-1049
Classification : 62G30, 62H20, 90C15
Keywords: stochastic programming; scenario generation; moment matching; distribution functions; service network design
@article{10_14736_kyb_2014_6_1049,
     author = {Kaut, Michal and Lium, Arnt-Gunnar},
     title = {Scenario generation with distribution functions and correlations},
     journal = {Kybernetika},
     pages = {1049--1064},
     year = {2014},
     volume = {50},
     number = {6},
     doi = {10.14736/kyb-2014-6-1049},
     mrnumber = {3301785},
     zbl = {1308.90116},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-6-1049/}
}
TY  - JOUR
AU  - Kaut, Michal
AU  - Lium, Arnt-Gunnar
TI  - Scenario generation with distribution functions and correlations
JO  - Kybernetika
PY  - 2014
SP  - 1049
EP  - 1064
VL  - 50
IS  - 6
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-6-1049/
DO  - 10.14736/kyb-2014-6-1049
LA  - en
ID  - 10_14736_kyb_2014_6_1049
ER  - 
%0 Journal Article
%A Kaut, Michal
%A Lium, Arnt-Gunnar
%T Scenario generation with distribution functions and correlations
%J Kybernetika
%D 2014
%P 1049-1064
%V 50
%N 6
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-6-1049/
%R 10.14736/kyb-2014-6-1049
%G en
%F 10_14736_kyb_2014_6_1049
Kaut, Michal; Lium, Arnt-Gunnar. Scenario generation with distribution functions and correlations. Kybernetika, Tome 50 (2014) no. 6, pp. 1049-1064. doi: 10.14736/kyb-2014-6-1049

[1] Birge, J. R., Louveaux, F.: Introduction to stochastic programming. Springer-Verlag, New York 1997. | MR | Zbl

[2] Dupačov{á}, J., Consigli, G., Wallace, S. W.: Scenarios for multistage stochastic programs. Ann. Oper. Res. 100 (2000), 1 - 4, 25-53. DOI: 10.1023/A:1019206915174. | DOI | MR | Zbl

[3] Dupačová, J., Gröwe-Kuska, N., Römisch, W.: Scenario reduction in stochastic programming: An approach using probability metrics. Math. Programming 95 (2003), 3, 493-511. DOI: 10.1007/s10107-002-0331-0. | DOI | MR

[4] Fleten, S.-E., Pettersen, E.: Constructing bidding curves for a price-taking retailer in the norwegian electricity market. IEEE Trans. Power Systems 20 (2005), 2, 701-708. DOI: 10.1109/TPWRS.2005.846082. | DOI

[5] Geyer, A., Hanke, M., Weissensteiner, A.: No-arbitrage conditions, scenario trees, and multi-asset financial optimization. European J. Oper. Res. 206 (2010), 3, 609-613. DOI: 10.1016/j.ejor.2010.03.022. | DOI | MR | Zbl

[6] Heitsch, H., Römisch, W.: Scenario reduction algorithms in stochastic programming. Comput. Optim. Appl. 24 (2003), 2 - 3, 187-206. DOI: 10.1023/A:1021805924152. | DOI | MR | Zbl

[7] Heitsch, H., Römisch, W.: Scenario tree modelling for multistage stochastic programs. Math. Programming 118 (2009), 2, 371-406. DOI: 10.1007/s10107-007-0197-2. | DOI | MR

[8] Heitsch, H., Römisch, W., Strugarek, C.: Stability of multistage stochastic programs. SIAM J. Optim. 17 (2006), 2, 511-525. DOI: 10.1137/050632865. | DOI | MR | Zbl

[9] Henrion, R., Küchler, C., Römisch, W.: Scenario reduction in stochastic programming with respect to discrepancy distances. Comput. Optim. Appl. 43 (2009), 1, 67-93. DOI: 10.1007/s10589-007-9123-z. | DOI | MR | Zbl

[10] Høyland, K., Wallace, S. W.: Generating scenario trees for multistage decision problems. Management Sci. 47 (2001), 2, 295-307. DOI: 10.1023/A:1021853807313. | DOI | Zbl

[11] Høyland, K., Kaut, M., Wallace, S. W.: A heuristic for moment-matching scenario generation. Comput. Optim. Appl. 24 (2003), 2 - 3, 169-185. | DOI | MR | Zbl

[12] Kall, P., Wallace, S. W.: Stochastic Programming. John Wiley and Sons, Chichester 1994. | MR | Zbl

[13] Kaut, M., Wallace, S. W.: Evaluation of scenario-generation methods for stochastic programming. Pacific J. Optim. 3 (2007), 2, 257-271. | MR | Zbl

[14] Kaut, M., Wallace, S. W.: Shape-based scenario generation using copulas. Comput. Management Sci. 8 (2011), 1 - 2, 181-199. DOI: 10.1007/s10287-009-0110-y. | DOI | MR

[15] Lium, A.-G., Kaut, M.: Scenario generation for obtaining sound solutions. In: Stochastic Service Network Design 2 (2006), Chapter 4.

[16] Mak, W., Morton, D., Wood, R.: Monte Carlo bounding techniques for determining solution quality in stochastic programs. Oper. Res. Letters 24 (1999), 47-56. | DOI | MR

[17] Okunev, J., White, D. R.: Moment matching for the masses. Available at SSRN: http://ssrn.com/abstract=921451, 2006.

[18] Pflug, G. C.: Scenario tree generation for multiperiod financial optimization by optimal discretization. Math. Programming 89 (2001), 2, 251-271. DOI: 10.1007/PL00011398. | DOI | MR

[19] Schütz, P., Tomasgard, A.: The impact of flexibility on operational supply chain planning. Int. J. Production Economics 134 (2011), 2, 300-311. DOI: 10.1016/j.ijpe.2009.11.004. | DOI

[20] Schütz, P., Tomasgard, A., Ahmed, S.: Supply chain design under uncertainty using sample average approximation and dual decomposition. European J. Oper. Res. 199 (2009), 2 409-419. DOI: 10.1016/j.ejor.2008.11.040. | DOI | Zbl

[21] Thapalia, B. K., Crainic, T. G., Kaut, M., Wallace, S. W.: Single-commodity stochastic network design with multiple sources and sinks. Inform. Systems Oper. Res. 49 (2011), 3, 193-211. DOI: 10.3138/infor.49.3.003. | DOI | MR

[22] Topaloglou, N., Vladimirou, H., Zenios, S. A.: A dynamic stochastic programming model for international portfolio management. European J. Oper. Res. 185 (2008), 3, 1501-1524. DOI: 10.1016/j.ejor.2005.07.035. | DOI | MR | Zbl

[23] Werner, A., Uggen, K. T., Fodstad, M., Lium, A.-G., Egging, R.: Stochastic mixed-integer programming for integrated portfolio planning in the LNG supply chain. The Energy J. 35 (2014), 1. DOI:10.5547/01956574.35.1.5. | DOI

Cité par Sources :