Verification of functional a posteriori error estimates for obstacle problem in 2D
Kybernetika, Tome 50 (2014) no. 6, pp. 978-1002.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We verify functional a posteriori error estimates proposed by S. Repin for a class of obstacle problems in two space dimensions. New benchmarks with known analytical solution are constructed based on one dimensional benchmark introduced by P. Harasim and J. Valdman. Numerical approximation of the solution of the obstacle problem is obtained by the finite element method using bilinear elements on a rectangular mesh. Error of the approximation is measured by a functional majorant. The majorant value contains three unknown fields: a gradient field discretized by Raviart-Thomas elements, Lagrange multipliers field discretized by piecewise constant functions and a scalar parameter $\beta$. The minimization of the majorant value is realized by an alternate minimization algorithm, whose convergence is discussed. Numerical results validate two estimates, the energy estimate bounding the error of approximation in the energy norm by the difference of energies of discrete and exact solutions and the majorant estimate bounding the difference of energies of discrete and exact solutions by the value of the functional majorant.
DOI : 10.14736/kyb-2014-6-0978
Classification : 34B15, 65K15, 65L60, 74K05, 74M15, 74S05
Keywords: obstacle problem; a posteriori error estimate; functional majorant; finite element method; variational inequalities; Raviart–Thomas elements
@article{10_14736_kyb_2014_6_0978,
     author = {Harasim, Petr and Valdman, Jan},
     title = {Verification of functional a posteriori error estimates for obstacle problem in {2D}},
     journal = {Kybernetika},
     pages = {978--1002},
     publisher = {mathdoc},
     volume = {50},
     number = {6},
     year = {2014},
     doi = {10.14736/kyb-2014-6-0978},
     mrnumber = {3301782},
     zbl = {06416870},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-6-0978/}
}
TY  - JOUR
AU  - Harasim, Petr
AU  - Valdman, Jan
TI  - Verification of functional a posteriori error estimates for obstacle problem in 2D
JO  - Kybernetika
PY  - 2014
SP  - 978
EP  - 1002
VL  - 50
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-6-0978/
DO  - 10.14736/kyb-2014-6-0978
LA  - en
ID  - 10_14736_kyb_2014_6_0978
ER  - 
%0 Journal Article
%A Harasim, Petr
%A Valdman, Jan
%T Verification of functional a posteriori error estimates for obstacle problem in 2D
%J Kybernetika
%D 2014
%P 978-1002
%V 50
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-6-0978/
%R 10.14736/kyb-2014-6-0978
%G en
%F 10_14736_kyb_2014_6_0978
Harasim, Petr; Valdman, Jan. Verification of functional a posteriori error estimates for obstacle problem in 2D. Kybernetika, Tome 50 (2014) no. 6, pp. 978-1002. doi : 10.14736/kyb-2014-6-0978. http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-6-0978/

Cité par Sources :