Keywords: difference of a functional; limit theorem; moments; U-statistics
@article{10_14736_kyb_2014_6_0896,
author = {Bene\v{s}, Viktor and Zikmundov\'a, Mark\'eta},
title = {Functionals of spatial point processes having a density with respect to the {Poisson} process},
journal = {Kybernetika},
pages = {896--913},
year = {2014},
volume = {50},
number = {6},
doi = {10.14736/kyb-2014-6-0896},
mrnumber = {3301778},
zbl = {06416866},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-6-0896/}
}
TY - JOUR AU - Beneš, Viktor AU - Zikmundová, Markéta TI - Functionals of spatial point processes having a density with respect to the Poisson process JO - Kybernetika PY - 2014 SP - 896 EP - 913 VL - 50 IS - 6 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-6-0896/ DO - 10.14736/kyb-2014-6-0896 LA - en ID - 10_14736_kyb_2014_6_0896 ER -
%0 Journal Article %A Beneš, Viktor %A Zikmundová, Markéta %T Functionals of spatial point processes having a density with respect to the Poisson process %J Kybernetika %D 2014 %P 896-913 %V 50 %N 6 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-6-0896/ %R 10.14736/kyb-2014-6-0896 %G en %F 10_14736_kyb_2014_6_0896
Beneš, Viktor; Zikmundová, Markéta. Functionals of spatial point processes having a density with respect to the Poisson process. Kybernetika, Tome 50 (2014) no. 6, pp. 896-913. doi: 10.14736/kyb-2014-6-0896
[1] Baddeley, A.: Spatial point processes and their applications. Stochastic geometry. Lecture Notes in Math. 1892 (2007), 1-75. | DOI | MR
[2] Decreusefond, L., Flint, I.: Moment formulae for general point processes. C. R. Acad. Sci. Paris, Ser. I (2014), 352, 357-361. | MR | Zbl
[3] Kaucky, J.: Combinatorial Identities (in Czech). Veda, Bratislava 1975.
[4] Last, G., Penrose, M. D.: Poisson process Fock space representation, chaos expansion and covariance inequalities. Probab. Theory Relat. Fields 150 (2011), 663-690. | DOI | MR | Zbl
[5] Last, G., Penrose, M. D., Schulte, M., Thäle, Ch.: Moments and central limit theorems for some multivariate Poisson functionals. Adv. Appl. Probab. 46 (2014), 2, 348-364. | DOI | MR
[6] Møller, J., Helisová, K.: Power diagrams and interaction processes for unions of disc. Adv. Appl. Probab. 40 (2008), 321-347. | DOI | MR
[7] Møller, J., Waagepetersen, R.: Statistical Inference and Simulation for Spatial Point Processes. Chapman and Hall/CRC, Boca Raton 2004. | MR
[8] Peccati, G., Taqqu, M. S.: Wiener Chaos: Moments, Cumulants and Diagrams. Bocconi Univ. Press, Springer, Milan 2011. | MR | Zbl
[9] Peccati, G., Zheng, C.: Multi-dimensional Gaussian fluctuations on the Poisson space. Electron. J. Probab. 15 (2010), 48, 1487-1527. | MR | Zbl
[10] Reitzner, M., Schulte, M.: Central limit theorems for $U$-statistics of Poisson point processes. Ann. Probab. 41 (2013), 3879-3909. | DOI | MR | Zbl
[11] Schneider, R., Weil, W.: Stochastic and Integral Geometry. Springer, Berlin 2008. | MR | Zbl
Cité par Sources :