Functionals of spatial point processes having a density with respect to the Poisson process
Kybernetika, Tome 50 (2014) no. 6, pp. 896-913
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

$U$-statistics of spatial point processes given by a density with respect to a Poisson process are investigated. In the first half of the paper general relations are derived for the moments of the functionals using kernels from the Wiener-Itô chaos expansion. In the second half we obtain more explicit results for a system of $U$-statistics of some parametric models in stochastic geometry. In the logarithmic form functionals are connected to Gibbs models. There is an inequality between moments of Poisson and non-Poisson functionals in this case, and we have a version of the central limit theorem in the Poisson case.
$U$-statistics of spatial point processes given by a density with respect to a Poisson process are investigated. In the first half of the paper general relations are derived for the moments of the functionals using kernels from the Wiener-Itô chaos expansion. In the second half we obtain more explicit results for a system of $U$-statistics of some parametric models in stochastic geometry. In the logarithmic form functionals are connected to Gibbs models. There is an inequality between moments of Poisson and non-Poisson functionals in this case, and we have a version of the central limit theorem in the Poisson case.
DOI : 10.14736/kyb-2014-6-0896
Classification : 60D05, 60F05, 60G55
Keywords: difference of a functional; limit theorem; moments; U-statistics
@article{10_14736_kyb_2014_6_0896,
     author = {Bene\v{s}, Viktor and Zikmundov\'a, Mark\'eta},
     title = {Functionals of spatial point processes having a density with respect to the {Poisson} process},
     journal = {Kybernetika},
     pages = {896--913},
     year = {2014},
     volume = {50},
     number = {6},
     doi = {10.14736/kyb-2014-6-0896},
     mrnumber = {3301778},
     zbl = {06416866},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-6-0896/}
}
TY  - JOUR
AU  - Beneš, Viktor
AU  - Zikmundová, Markéta
TI  - Functionals of spatial point processes having a density with respect to the Poisson process
JO  - Kybernetika
PY  - 2014
SP  - 896
EP  - 913
VL  - 50
IS  - 6
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-6-0896/
DO  - 10.14736/kyb-2014-6-0896
LA  - en
ID  - 10_14736_kyb_2014_6_0896
ER  - 
%0 Journal Article
%A Beneš, Viktor
%A Zikmundová, Markéta
%T Functionals of spatial point processes having a density with respect to the Poisson process
%J Kybernetika
%D 2014
%P 896-913
%V 50
%N 6
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-6-0896/
%R 10.14736/kyb-2014-6-0896
%G en
%F 10_14736_kyb_2014_6_0896
Beneš, Viktor; Zikmundová, Markéta. Functionals of spatial point processes having a density with respect to the Poisson process. Kybernetika, Tome 50 (2014) no. 6, pp. 896-913. doi: 10.14736/kyb-2014-6-0896

[1] Baddeley, A.: Spatial point processes and their applications. Stochastic geometry. Lecture Notes in Math. 1892 (2007), 1-75. | DOI | MR

[2] Decreusefond, L., Flint, I.: Moment formulae for general point processes. C. R. Acad. Sci. Paris, Ser. I (2014), 352, 357-361. | MR | Zbl

[3] Kaucky, J.: Combinatorial Identities (in Czech). Veda, Bratislava 1975.

[4] Last, G., Penrose, M. D.: Poisson process Fock space representation, chaos expansion and covariance inequalities. Probab. Theory Relat. Fields 150 (2011), 663-690. | DOI | MR | Zbl

[5] Last, G., Penrose, M. D., Schulte, M., Thäle, Ch.: Moments and central limit theorems for some multivariate Poisson functionals. Adv. Appl. Probab. 46 (2014), 2, 348-364. | DOI | MR

[6] Møller, J., Helisová, K.: Power diagrams and interaction processes for unions of disc. Adv. Appl. Probab. 40 (2008), 321-347. | DOI | MR

[7] Møller, J., Waagepetersen, R.: Statistical Inference and Simulation for Spatial Point Processes. Chapman and Hall/CRC, Boca Raton 2004. | MR

[8] Peccati, G., Taqqu, M. S.: Wiener Chaos: Moments, Cumulants and Diagrams. Bocconi Univ. Press, Springer, Milan 2011. | MR | Zbl

[9] Peccati, G., Zheng, C.: Multi-dimensional Gaussian fluctuations on the Poisson space. Electron. J. Probab. 15 (2010), 48, 1487-1527. | MR | Zbl

[10] Reitzner, M., Schulte, M.: Central limit theorems for $U$-statistics of Poisson point processes. Ann. Probab. 41 (2013), 3879-3909. | DOI | MR | Zbl

[11] Schneider, R., Weil, W.: Stochastic and Integral Geometry. Springer, Berlin 2008. | MR | Zbl

Cité par Sources :