An efficient estimator for Gibbs random fields
Kybernetika, Tome 50 (2014) no. 6, pp. 883-895.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

An efficient estimator for the expectation $\int f \d P$ is constructed, where $P$ is a Gibbs random field, and $f$ is a local statistic, i. e. a functional depending on a finite number of coordinates. The estimator coincides with the empirical estimator under the conditions stated in Greenwood and Wefelmeyer [6], and covers the known special cases, namely the von Mises statistic for the i.i.d. underlying fields and the case of one-dimensional Markov chains.
DOI : 10.14736/kyb-2014-6-0883
Classification : 62F12, 62M40
Keywords: Gibbs random field; efficient estimator; empirical estimator
@article{10_14736_kyb_2014_6_0883,
     author = {Jan\v{z}ura, Martin},
     title = {An efficient estimator for {Gibbs} random fields},
     journal = {Kybernetika},
     pages = {883--895},
     publisher = {mathdoc},
     volume = {50},
     number = {6},
     year = {2014},
     doi = {10.14736/kyb-2014-6-0883},
     mrnumber = {3301777},
     zbl = {06416865},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-6-0883/}
}
TY  - JOUR
AU  - Janžura, Martin
TI  - An efficient estimator for Gibbs random fields
JO  - Kybernetika
PY  - 2014
SP  - 883
EP  - 895
VL  - 50
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-6-0883/
DO  - 10.14736/kyb-2014-6-0883
LA  - en
ID  - 10_14736_kyb_2014_6_0883
ER  - 
%0 Journal Article
%A Janžura, Martin
%T An efficient estimator for Gibbs random fields
%J Kybernetika
%D 2014
%P 883-895
%V 50
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-6-0883/
%R 10.14736/kyb-2014-6-0883
%G en
%F 10_14736_kyb_2014_6_0883
Janžura, Martin. An efficient estimator for Gibbs random fields. Kybernetika, Tome 50 (2014) no. 6, pp. 883-895. doi : 10.14736/kyb-2014-6-0883. http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-6-0883/

Cité par Sources :