An efficient estimator for Gibbs random fields
Kybernetika, Tome 50 (2014) no. 6, pp. 883-895
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

An efficient estimator for the expectation $\int f \d P$ is constructed, where $P$ is a Gibbs random field, and $f$ is a local statistic, i. e. a functional depending on a finite number of coordinates. The estimator coincides with the empirical estimator under the conditions stated in Greenwood and Wefelmeyer [6], and covers the known special cases, namely the von Mises statistic for the i.i.d. underlying fields and the case of one-dimensional Markov chains.
An efficient estimator for the expectation $\int f \d P$ is constructed, where $P$ is a Gibbs random field, and $f$ is a local statistic, i. e. a functional depending on a finite number of coordinates. The estimator coincides with the empirical estimator under the conditions stated in Greenwood and Wefelmeyer [6], and covers the known special cases, namely the von Mises statistic for the i.i.d. underlying fields and the case of one-dimensional Markov chains.
DOI : 10.14736/kyb-2014-6-0883
Classification : 62F12, 62M40
Keywords: Gibbs random field; efficient estimator; empirical estimator
@article{10_14736_kyb_2014_6_0883,
     author = {Jan\v{z}ura, Martin},
     title = {An efficient estimator for {Gibbs} random fields},
     journal = {Kybernetika},
     pages = {883--895},
     year = {2014},
     volume = {50},
     number = {6},
     doi = {10.14736/kyb-2014-6-0883},
     mrnumber = {3301777},
     zbl = {06416865},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-6-0883/}
}
TY  - JOUR
AU  - Janžura, Martin
TI  - An efficient estimator for Gibbs random fields
JO  - Kybernetika
PY  - 2014
SP  - 883
EP  - 895
VL  - 50
IS  - 6
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-6-0883/
DO  - 10.14736/kyb-2014-6-0883
LA  - en
ID  - 10_14736_kyb_2014_6_0883
ER  - 
%0 Journal Article
%A Janžura, Martin
%T An efficient estimator for Gibbs random fields
%J Kybernetika
%D 2014
%P 883-895
%V 50
%N 6
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-6-0883/
%R 10.14736/kyb-2014-6-0883
%G en
%F 10_14736_kyb_2014_6_0883
Janžura, Martin. An efficient estimator for Gibbs random fields. Kybernetika, Tome 50 (2014) no. 6, pp. 883-895. doi: 10.14736/kyb-2014-6-0883

[1] Bickel, P. J., Klaassen, C. A. J., Ritov, Y., Wellner, J. A.: Efficient and Adaptive Estimation for Semiparametric Models. Johns Hopkins University Press, Baltimore 1993. | MR | Zbl

[2] Dobrushin, R. L.: Prescribing a system of random variables by conditional distributions. Theor. Probab. Appl. 15 (1970), 458-486. | DOI | Zbl

[3] Dobrushin, R. L., Nahapetian, B. S.: Strong convexity of the pressure for lattice systems of classical physics (in Russian). Teoret. Mat. Fiz. 20 (1974), 223-234. | MR

[4] Georgii, H. O.: Gibbs Measures and Phase Transitions. De Gruyter Studies in Mathematics 9, De Gruyter, Berlin 1988. | MR | Zbl

[5] Greenwood, P. E., Wefelmeyer, W.: Efficiency of empirical estimators for Markov Chains. Ann. Statist. 23 (1995), 132-143. | DOI | MR | Zbl

[6] Greenwood, P. E., Wefelmeyer, W.: Characterizing efficient empirical estimators for local interaction Gibbs fields. Stat. Inference Stoch. Process. 2 (1999), 119-134. | DOI | MR | Zbl

[7] Gross, K.: Absence of second-order phase transitions in the Dobrushin uniqueness region. J. Statist. Phys. 25 (1981), 57-72. | DOI | MR

[8] Hájek, J.: A characterization of limiting distributions of regular estimates. Wahrsch. Verw. Gebiete 14 (1970), 323-330. | DOI | MR | Zbl

[9] Janžura, M.: Statistical analysis of Gibbs random fields. In: Trans. 10th Prague Conference on Inform. Theory, Stat. Dec. Functions, Random Processes, Prague 1984, pp. 429-438. | MR | Zbl

[10] Janžura, M.: Local asymptotic normality for Gibbs random fields. In: Proc. Fourth Prague Symposium on Asymptotic Statistics (P. Mandl and M. Hušková, eds.), Charles University, Prague 1989, pp. 275-284. | MR | Zbl

[11] Janžura, M.: Asymptotic behaviour of the error probabilities in the pseudo-likelihood ratio test for Gibbs-Markov distributions. In: Prof. Asymptotic Statistics (P. Mandl and M. Hušková, eds.), Physica-Verlag, Heidelberg 1994, pp. 285-296. | MR

[12] Janžura, M.: Asymptotic results in parameter estimation for Gibbs random fields. Kybernetika 33 (1997), 2, 133-159. | MR | Zbl

[13] Janžura, M.: On the concept of the asymptotic Rényi distances for random fields. Kybernetika 35 (1999), 3, 353-366. | MR | Zbl

[14] Künsch, H.: Decay of correlations under Dobrushin's uniqueness condition and its applications. Comm. Math. Phys. 84 (1982), 207-222. | DOI | MR

[15] Younes, L.: Parameter inference for imperfectly observed Gibbsian fields. Probab. Theory Rel. Fields 82 (1989), 625-645. | DOI | MR

Cité par Sources :