Keywords: energy-preserving; explicit Runge–Kutta methods; gradient
@article{10_14736_kyb_2014_5_0838,
author = {Hu, Guang-Da},
title = {A modified version of explicit {Runge-Kutta} methods for energy-preserving},
journal = {Kybernetika},
pages = {838--847},
year = {2014},
volume = {50},
number = {5},
doi = {10.14736/kyb-2014-5-0838},
mrnumber = {3301864},
zbl = {06410707},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-5-0838/}
}
TY - JOUR AU - Hu, Guang-Da TI - A modified version of explicit Runge-Kutta methods for energy-preserving JO - Kybernetika PY - 2014 SP - 838 EP - 847 VL - 50 IS - 5 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-5-0838/ DO - 10.14736/kyb-2014-5-0838 LA - en ID - 10_14736_kyb_2014_5_0838 ER -
Hu, Guang-Da. A modified version of explicit Runge-Kutta methods for energy-preserving. Kybernetika, Tome 50 (2014) no. 5, pp. 838-847. doi: 10.14736/kyb-2014-5-0838
[1] Brugnano, L., Calvo, M., Montijano, J. I., Rândez, L.: Energy-preserving methods for Poisson systems. J. Comput. Appl. Math. 236 (2012), 3890-3904. | DOI | MR | Zbl
[2] Brugnano, L., Iavernaro, F., Trigiante, D.: Hamiltonian boundary value methods (energy-preserving discrete line integral methods). J. Numer. Anal. Ind. Appl. Math. 5 (2010), 1-2, 17-37. | MR
[3] Calvo, M., Laburta, M. P., Montijano, J. I., Rândez, L.: Error growth in numerical integration of periodic orbits. Math. Comput. Simul. 81 (2011), 2646-2661. | DOI | MR
[4] Calvo, M., Iserles, A., Zanna, A.: Numerical solution of isospectral flows. Math. Comput. 66 (1997), 1461-1486. | DOI | MR | Zbl
[5] Cooper, G. J.: Stability of Runge-Kutta methods for trajectory problems. IMA J. Numer. Anal. 7 (1987), 1-13. | DOI | MR | Zbl
[6] Buono, N. Del, Mastroserio, C.: Explicit methods based on a class of four stage Runge-Kutta methods for preserving quadratic laws. J. Comput. Appl. Math. 140 (2002), 231-243. | DOI | MR
[7] Griffiths, D. F., Higham, D. J.: Numerical Methods for Ordinary Differential Equations. Springer-Verlag, London 2010. | MR | Zbl
[8] Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration. Springer-Verlag, Berlin 2002. | MR | Zbl
[9] Khalil, H. K.: Nonlinear Systems. Third Edition. Prentice Hall, Upper Saddle River, NJ 2002.
[10] Lee, T., Leok, M., McClamroch, N. H.: Lie variational integrators for the full body problem in orbital methanics. Celest. Meth. Dyn. Astr. 98 (2007), 121-144. | DOI | MR
[11] Li, S.: Introduction to Classical Mechanics. (In Chinese.). University of Science and Technology of China, Hefei 2007.
[12] Shampine, L. F.: Conservation laws and numerical solution of ODEs. Comput. Math. Appl. 12B (1986), 1287-1296. | DOI | MR
Cité par Sources :