Keywords: Choquet expectation; monotone probability; exponential inequality; a strong law of large numbers
@article{10_14736_kyb_2014_5_0804,
author = {Agahi, Hamzeh and Mesiar, Radko},
title = {On an exponential inequality and a strong law of large numbers for monotone measures},
journal = {Kybernetika},
pages = {804--813},
year = {2014},
volume = {50},
number = {5},
doi = {10.14736/kyb-2014-5-0804},
mrnumber = {3301862},
zbl = {06410705},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-5-0804/}
}
TY - JOUR AU - Agahi, Hamzeh AU - Mesiar, Radko TI - On an exponential inequality and a strong law of large numbers for monotone measures JO - Kybernetika PY - 2014 SP - 804 EP - 813 VL - 50 IS - 5 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-5-0804/ DO - 10.14736/kyb-2014-5-0804 LA - en ID - 10_14736_kyb_2014_5_0804 ER -
%0 Journal Article %A Agahi, Hamzeh %A Mesiar, Radko %T On an exponential inequality and a strong law of large numbers for monotone measures %J Kybernetika %D 2014 %P 804-813 %V 50 %N 5 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-5-0804/ %R 10.14736/kyb-2014-5-0804 %G en %F 10_14736_kyb_2014_5_0804
Agahi, Hamzeh; Mesiar, Radko. On an exponential inequality and a strong law of large numbers for monotone measures. Kybernetika, Tome 50 (2014) no. 5, pp. 804-813. doi: 10.14736/kyb-2014-5-0804
[1] Choquet, G.: Theory of capacities. Ann. Inst. Fourier 5 (1954), 131-295. | DOI | MR | Zbl
[2] Denneberg, D.: Non-additive Measure and Integral. Kluwer Academic Publishers, Dordrecht 1994. | MR | Zbl
[3] Dvoretzky, A.: On the strong stability of a sequence of events. Ann. Math. Statist. 20 (1949), 2, 296-299. | DOI | MR | Zbl
[4] Kim, T. S., Kim, H. C.: On the exponential inequality for negatively dependent sequence. Korean Math. Soc. Commun. 22 (2007), 2, 315-321. | DOI | MR
[5] Lehmann, E.: Some concepts of dependence. Ann. Math. Statist. 37 (1966), 1137-1153. | DOI | MR | Zbl
[6] Li, J., Yasuda, M., Jiang, Q., Suzuki, H., Wang, Z., Klir, G. J.: Convergence of sequence of measurable functions on fuzzy measure spaces. Fuzzy Sets and Systems 87 (1997), 317-323. | MR | Zbl
[7] Mesiar, R., Li, J., Pap, E.: The Choquet integral as Lebesgue integral and related inequalities. Kybernetika 46 (2010), 1098-1107. | MR | Zbl
[8] Nooghabi, H. J., Azarnoosh, H. A.: Exponential inequality for negatively associated random variables. Statist. Papers 50 (2009), 419-428. | DOI | MR | Zbl
[9] Oliveira, P. D.: An exponential inequality for associated variables. Statist. Probab. Lett. 73 (2005), 189-197. | DOI | MR | Zbl
[10] Pap, E.: Null-additive Set Functions. Kluwer, Dordrecht 1995. | MR | Zbl
[11] Petrov, V. V.: Sums of Independent Random Variables. Springer-Verlag, Berlin 1975. | MR | Zbl
[12] Varošanec, S.: On h-convexity. J. Math. Anal. Appl. 326 (2007), 303-311. | DOI | MR | Zbl
[13] Wang, X., Hu, S., Shen., A., Yang, W.: An exponential inequality for a NOD sequence and a strong law of large numbers. Appl. Math. Lett. 24 (2011), 219-223. | DOI | MR
[14] Wang, Z., Klir, G. J.: Generalized Measure Theory. Springer, New York 2009. | MR | Zbl
[15] Xing, G., Yang, S.: An exponential inequality for strictly stationary and negatively associated random variables. Commun. Statistics-Theory and Methods 39 (2010), 340-349. | DOI | MR | Zbl
[16] Xing, G. D., Yang, S. C., Liu, A. L., Wang, X. P.: A remark on the exponential inequality for negatively associated random variables. J. Korean Statist. Soc. 38 (2009), 53-57. | DOI | MR | Zbl
Cité par Sources :