On the hyperspace of bounded closed sets under a generalized Hausdorff stationary fuzzy metric
Kybernetika, Tome 50 (2014) no. 5, pp. 758-773
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we generalize the classical Hausdorff metric with t-norms and obtain its basic properties. Furthermore, for a given stationary fuzzy metric space with a t-norm without zero divisors, we propose a method for constructing a generalized Hausdorff fuzzy metric on the set of the nonempty bounded closed subsets. Finally we discuss several important properties as completeness, completion and precompactness.
In this paper, we generalize the classical Hausdorff metric with t-norms and obtain its basic properties. Furthermore, for a given stationary fuzzy metric space with a t-norm without zero divisors, we propose a method for constructing a generalized Hausdorff fuzzy metric on the set of the nonempty bounded closed subsets. Finally we discuss several important properties as completeness, completion and precompactness.
DOI : 10.14736/kyb-2014-5-0758
Classification : 03E72, 46S40, 54A40, 54B20
Keywords: Hausdorff metric; hyperspace; triangular norms; stationary fuzzy metric
@article{10_14736_kyb_2014_5_0758,
     author = {Qiu, Dong and Lu, Chongxia and Deng, Shuai and Wang, Liang},
     title = {On the hyperspace of bounded closed sets under a generalized {Hausdorff} stationary fuzzy metric},
     journal = {Kybernetika},
     pages = {758--773},
     year = {2014},
     volume = {50},
     number = {5},
     doi = {10.14736/kyb-2014-5-0758},
     mrnumber = {3301859},
     zbl = {06410702},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-5-0758/}
}
TY  - JOUR
AU  - Qiu, Dong
AU  - Lu, Chongxia
AU  - Deng, Shuai
AU  - Wang, Liang
TI  - On the hyperspace of bounded closed sets under a generalized Hausdorff stationary fuzzy metric
JO  - Kybernetika
PY  - 2014
SP  - 758
EP  - 773
VL  - 50
IS  - 5
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-5-0758/
DO  - 10.14736/kyb-2014-5-0758
LA  - en
ID  - 10_14736_kyb_2014_5_0758
ER  - 
%0 Journal Article
%A Qiu, Dong
%A Lu, Chongxia
%A Deng, Shuai
%A Wang, Liang
%T On the hyperspace of bounded closed sets under a generalized Hausdorff stationary fuzzy metric
%J Kybernetika
%D 2014
%P 758-773
%V 50
%N 5
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-5-0758/
%R 10.14736/kyb-2014-5-0758
%G en
%F 10_14736_kyb_2014_5_0758
Qiu, Dong; Lu, Chongxia; Deng, Shuai; Wang, Liang. On the hyperspace of bounded closed sets under a generalized Hausdorff stationary fuzzy metric. Kybernetika, Tome 50 (2014) no. 5, pp. 758-773. doi: 10.14736/kyb-2014-5-0758

[1] Adibi, H., Cho, Y. J., O'Regan, D., Saadati, R.: Common fixed point theorems in $L$-fuzzy metric spaces. Appl. Math. Comput. 182 (2006), 820-828. | DOI | MR

[2] Aubin, J. P., Ekeland, I.: Applied Nonlinear Analysis. Wiley, New York 1984. | MR | Zbl

[3] Azé, D., Corvellec, J. N., Lucchetti, R. E.: Variational pairs and applications to stability in nonsmooth analysis. Nonlinear Anal. Theory Methods Appl. 49 (2002), 643-670. | MR | Zbl

[4] Beer, G.: Topologies on Closed and Closed Convex Sets. Kluwer Academic Publishers, Dordrecht 1993. | MR | Zbl

[5] Chang, S. S., Cho, Y. J., Lee, B. S., Jung, J. S., Kang, S. M.: Coincidence point and minimization theorems in fuzzy metric spaces. Fuzzy Sets and Systems 88 (1997), 119-128. | MR

[6] Cho, Y. J., Petrot, N.: Existence theorems for fixed fuzzy points with closed $\alpha$-cut sets in complete metric spaces. Fuzzy Sets and Systems 26 (2011), 115-124. | MR | Zbl

[7] Deng, Z. K.: Fuzzy pseudo-metric spaces. J. Math. Anal. Appl. 86 (1982), 74-95. | DOI | Zbl

[8] Engelking, R.: General Topology. PWN-Polish Science Publishers, Warsaw 1977. | MR | Zbl

[9] George, A., Veeramani, P.: On some results in fuzzy metric spaces. Fuzzy Sets and Systems 64 (1994), 395-399. | DOI | MR | Zbl

[10] Ghil, B. M., Kim, Y. K.: Continuity of functions defined on the space of fuzzy sets. Inform. Sci. 157 (2003), 155-165. | DOI | MR | Zbl

[11] Gregori, V., Sapena, A.: On fixed point theorem in fuzzy metric spaces. Fuzzy Sets and Systems 125 (2002), 245-252. | MR

[12] Gregori, V., Romaguera, S.: On completion of fuzzy metric spaces. Fuzzy Sets and Systems 130 (2002), 399-404. | MR | Zbl

[13] Gregori, V., Romaguera, S.: Characterizing completable fuzzy metric spaces. Fuzzy Sets and Systems 144 (2004), 411-420. | DOI | MR | Zbl

[14] Gregori, V., Morillas, S., Sapena, A.: Examples of fuzzy metrics and applications. Fuzzy Sets and Systems 170 (2011), 95-111. | MR | Zbl

[15] Hausdorff, F.: Set Theory. Chelsea, New York 1957. | MR | Zbl

[16] Hop, N.V.: Solving fuzzy (stochastic) linear programming problems using superiority and inferiority measures. Inform. Sci. 177 (2007), 1977-1991. | DOI | MR | Zbl

[17] Hop, N. V.: Solving linear programming problems under fuzziness and randomness environment using attainment values. Inform. Sci. 177 (2007), 2971-2984. | DOI | MR | Zbl

[18] Joo, S. Y., Kim, Y. K.: The Skorokhod topology on space of fuzzy numbers. Fuzzy Sets and Systems 111 (2000), 497-501. | DOI | MR | Zbl

[19] Joo, S. Y., Kim, Y. K.: Topological properties on the space of fuzzy sets. J. Math. Anal. Appl. 246 (2000), 576-590. | DOI | MR | Zbl

[20] Kaleva, O., Seikkala, S.: On fuzzy metric spaces. Fuzzy Sets and Systems 12 (1984), 215-229. | DOI | MR | Zbl

[21] Kaleva, O.: On the convergence of fuzzy sets. Fuzzy Sets and Systems 17 (1985), 53-65. | DOI | MR | Zbl

[22] Kaleva, O.: Fuzzy differential equations. Fuzzy Sets and Systems 24 (1987), 301-317. | DOI | MR | Zbl

[23] Kim, Y. K.: Compactness and convexity on the space of fuzzy sets. J. Math. Anal. Appl. 264 (2001), 122-132. | DOI | MR | Zbl

[24] Kim, Y. K.: Compactness and convexity on the space of fuzzy sets II. Nonlinear Anal. Theory Methods Appl. 57 (2004), 639-653. | MR | Zbl

[25] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000. | MR | Zbl

[26] Kramosil, I., Michálek, J.: Fuzzy metric and statistical metric spaces. Kybernetika 11 (1975), 326-334. | MR

[27] Matheron, G.: Random Sets and Integral Geometry. Wiley, New York 1975. | MR | Zbl

[28] Mordukhovich, B. S., Shao, Y.: Fuzzy calculus for coderivatives of multifunctions. Nonlinear Anal. Theory Methods Appl. 29 (1997), 605-626. | DOI | MR | Zbl

[29] Jr, S. B. Nadler: Multi-valued contraction mappings. Pacific J. Math. 30 (1969), 475-487. | DOI | MR

[30] Puri, M. L., Ralescu, D. A.: Fuzzy random variables. J. Math. Anal. Appl. 114 (1986), 409-422. | DOI | MR | Zbl

[31] Qiu, D., Zhang, W.: On Decomposable Measures Induced by Metrics. J. Appl. Math. Volume 2012, Article ID 701206, 8 pages. | MR | Zbl

[32] Qiu, D., Zhang, W.: The strongest t-norm for fuzzy metric spaces. Kybernetika 49 (2013), 141-148. | MR | Zbl

[33] Qiu, D., Zhang, W., Li, C.: On decomposable measures constructed by using stationary fuzzy pseudo-ultrametrics. Int. J. Gen. Syst. 42 (2013), 395-404. | DOI | MR | Zbl

[34] Qiu, D., Zhang, W., Li, C.: Extension of a class of decomposable measures using fuzzy pseudometrics. Fuzzy Sets and Systems 222 (2013), 33-44. | MR | Zbl

[35] Rodríguez-López, J., Romaguera, S.: The Hausdorff fuzzy metric on compact sets. Fuzzy Sets and Systems 147 (2004), 273-283. | MR | Zbl

[36] Romaguera, S., Sanchis, M.: On fuzzy metric groups. Fuzzy Sets and Systems 124 (2001), 109-115. | DOI | MR | Zbl

[37] Shi, F. G., Zheng, C. Y.: Metrization theorems in L-topological spaces. Fuzzy Sets and Systems 149 (2005), 455-471. | DOI | MR | Zbl

[38] Trillas, E.: On the use of words and fuzzy sets. Inf. Sci. 176 (2006), 1463-1487. | DOI | MR | Zbl

[39] Zadeh, L. A.: Fuzzy sets. Inform. Control 8 (1965), 338-353. | DOI | MR | Zbl

[40] Zhang, W., Qiu, D., Li, Z., Xiong, G.: Common fixed point theorems in a new fuzzy metric space. J. Appl. Math. Volume 2012, Article ID 890678, 18 pages. | DOI | MR | Zbl

Cité par Sources :