Hypotheses testing with the two-parameter Pareto distribution on the basis of records in fuzzy environment
Kybernetika, Tome 50 (2014) no. 5, pp. 744-757
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In problems of testing statistical hypotheses, we may be confronted with fuzzy concepts. There are also situations in which the available data are record statistics such as weather and sports. In this paper, we consider the problem of testing fuzzy hypotheses on the basis of records. Pareto distribution is investigated in more details since it is used in applications including economic and life testing analysis. For illustrative proposes, a real data set on annual wage is analyzed using the results obtained.
In problems of testing statistical hypotheses, we may be confronted with fuzzy concepts. There are also situations in which the available data are record statistics such as weather and sports. In this paper, we consider the problem of testing fuzzy hypotheses on the basis of records. Pareto distribution is investigated in more details since it is used in applications including economic and life testing analysis. For illustrative proposes, a real data set on annual wage is analyzed using the results obtained.
DOI : 10.14736/kyb-2014-5-0744
Classification : 62A86, 62F03, 62F86
Keywords: decision analysis; fuzzy hypotheses; pareto distribution; record data; testing hypotheses
@article{10_14736_kyb_2014_5_0744,
     author = {Saeidi, Ali Reza and Akbari, Mohammad Ghasem and Doostparast, Mahdi},
     title = {Hypotheses testing with the two-parameter {Pareto} distribution on the basis of records in fuzzy environment},
     journal = {Kybernetika},
     pages = {744--757},
     year = {2014},
     volume = {50},
     number = {5},
     doi = {10.14736/kyb-2014-5-0744},
     mrnumber = {3301858},
     zbl = {1308.62029},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-5-0744/}
}
TY  - JOUR
AU  - Saeidi, Ali Reza
AU  - Akbari, Mohammad Ghasem
AU  - Doostparast, Mahdi
TI  - Hypotheses testing with the two-parameter Pareto distribution on the basis of records in fuzzy environment
JO  - Kybernetika
PY  - 2014
SP  - 744
EP  - 757
VL  - 50
IS  - 5
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-5-0744/
DO  - 10.14736/kyb-2014-5-0744
LA  - en
ID  - 10_14736_kyb_2014_5_0744
ER  - 
%0 Journal Article
%A Saeidi, Ali Reza
%A Akbari, Mohammad Ghasem
%A Doostparast, Mahdi
%T Hypotheses testing with the two-parameter Pareto distribution on the basis of records in fuzzy environment
%J Kybernetika
%D 2014
%P 744-757
%V 50
%N 5
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-5-0744/
%R 10.14736/kyb-2014-5-0744
%G en
%F 10_14736_kyb_2014_5_0744
Saeidi, Ali Reza; Akbari, Mohammad Ghasem; Doostparast, Mahdi. Hypotheses testing with the two-parameter Pareto distribution on the basis of records in fuzzy environment. Kybernetika, Tome 50 (2014) no. 5, pp. 744-757. doi: 10.14736/kyb-2014-5-0744

[1] Akbari, M. G., Arefi, M.: Statistical nonparametric test based on the intuitionistic fuzzy data. J. Intell. Fuzzy Systems 25 (2013), 525-534. | MR | Zbl

[2] Akbari, M. G., Rezaei, A.: An uniformly minimum variance unbiased point estimator using fuzzy observations. Austrian J. Statist. 36 (2007), 307-317.

[3] Akbari, M. G., Rezaei, A.: Bootstrap statistical inference for the variance based on fuzzy data. Austrian J. Statist. 38 (2009), 121-130.

[4] Akbari, M. G., Rezaei, A., Waghei, Y.: Statistical inference about the variance of fuzzy random variables. Sankhya 71-B (2009), 1-15. | MR | Zbl

[5] Akbari, M. G., Rezaei, A.: Bootstrap testing fuzzy hypotheses and observations on fuzzy statistic. Expert Systems Appl. 37 (2010), 8, 5782-5787.

[6] Arnold, B. C.: Pareto Distributions. International Co-operative Publishing House, Fairland 1983. | MR | Zbl

[7] Arnold, B. C., Balakrishnan, N., Nagaraja, H. N.: Records. John Wiley and Sons, New York 1998. | MR | Zbl

[8] Arnold, B. F.: An approach to fuzzy hypothesis testing. Metrika 44 (1996), 119-126. | DOI | MR | Zbl

[9] Arnold, B. F.: Testing fuzzy hypotheses with crisp data. Fuzzy Sets and Systems 94 (1998), 323-333. | DOI | MR | Zbl

[10] Buckley, J. J.: Fuzzy Probabilities: New Approach and Applications. Springer-Verlag, Berlin, Heidelberg 2005. | MR | Zbl

[11] Buckley, J. J.: Fuzzy Probability and Statistics. Springer-Verlag, Berlin, Heidelberg 2006. | Zbl

[12] Delgado, M., Verdegay, J. L., Vila, M. A.: Testing fuzzy hypotheses, a Bayesian approach. In: Approximate Reasoning in Expert Systems (M. M. Gupta, ed.) 1985, pp. 307-316. | MR

[13] Doostparast, M., Akbari, M. G., Balakrishnan, N.: Bayesian analysis for the two-parameter Pareto distribution based on record values and times. J. Stat. Comput. Simul. 81 (2011), 11, 1393-1403. | DOI | MR

[14] Doostparast, M., Balakrishnan, N.: Pareto record-based analysis. Statistics 47 (2013), 5, 1075-1089. | DOI | MR

[15] Dyer, D.: Structural probability bounds for the strong Pareto laws. Canad. J. Statist. 9 (1981), 71-77. | DOI | MR

[16] Filzmoser, P., Viertl, R.: Testing hypotheses with fuzzy data: the fuzzy $p-$value. Metrika 59 (2004), 21-29. | DOI | MR | Zbl

[17] Gonzalez-Rodriguez, G., Montenegro, M., Colubi, A., Gil, M. A.: Bootstrap techniques and fuzzy random variables: Synergy in hypothesis testing with fuzzy data. Fuzzy Sets and Systems 157 (2006), 2608-2613. | MR | Zbl

[18] Gulati, S., Padgett, W. J.: Smooth nonparametric estimation of the distribution and density functions from record-breaking data. Commun. Commun. Statist. - Theory and Methods 23 (1994), 1259-1274. | DOI | MR | Zbl

[19] Holena, M.: Fuzzy hypotheses for GUHA implications. Fuzzy Sets and Systems 98 (1998), 101-125. | DOI

[20] Holena, M.: Fuzzy hypotheses testing in the framework of fuzzy logic. Fuzzy Sets and Systems 145 (2004), 229-252. | DOI | MR | Zbl

[21] Körner, R.: An asymptotic $\alpha-$cut for the expectation of random fuzzy variables. J. Statist. Plann. Inferences 83 (2000), 331-346. | DOI | MR

[22] Montenegro, M., Colubi, A., Casals, M. R., Gil, M. A.: Asymptotic and bootstrap techniques for testing the expected value of a fuzzy random variable. Metrika 59 (2004), 31-49. | DOI | MR | Zbl

[23] Parchami, A., Taheri, S. M., Mashinchi, M.: Fuzzy p-value in testing fuzzy hypotheses with crisp data. Statist. Papers 51 (2010), 1, 209-226. | DOI | MR | Zbl

[24] Samaniego, F. J., Whitaker, L. R.: On estimating population characteristics from record-breaking observations II: NonParametric results. Naval Res. Logist. 35 (1988), 221-236. | DOI | MR | Zbl

[25] Taheri, S. M., Arefi, M.: Testing fuzzy hypotheses based on fuzzy statistics. Soft Computing 13 (2009), 617-625. | DOI

[26] Taheri, S. M., Behboodian, J.: Neyman-Pearson lemma for fuzzy hypotheses testing. Metrika 49 (1999), 3-17. | DOI | MR | Zbl

[27] Torabi, H., Behboodian, J., Taheri, S. M.: Neyman-Pearson Lemma for fuzzy hypotheses testing with vague data. Metrika 64 (2006), 289-304. | DOI | MR | Zbl

[28] Viertl, R.: Univariate statistical analysis with fuzzy data. Comput. Statist. Data Anal. 51 (2006), 133-147. | DOI | MR | Zbl

[29] Yao, J. S., Wu, K.: Ranking fuzzy numbers based on decomposition principle and signed distance. Fuzzy Sets and Systems 11 (2000), 275-288. | DOI | MR | Zbl

Cité par Sources :