Keywords: decision analysis; fuzzy hypotheses; pareto distribution; record data; testing hypotheses
@article{10_14736_kyb_2014_5_0744,
author = {Saeidi, Ali Reza and Akbari, Mohammad Ghasem and Doostparast, Mahdi},
title = {Hypotheses testing with the two-parameter {Pareto} distribution on the basis of records in fuzzy environment},
journal = {Kybernetika},
pages = {744--757},
year = {2014},
volume = {50},
number = {5},
doi = {10.14736/kyb-2014-5-0744},
mrnumber = {3301858},
zbl = {1308.62029},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-5-0744/}
}
TY - JOUR AU - Saeidi, Ali Reza AU - Akbari, Mohammad Ghasem AU - Doostparast, Mahdi TI - Hypotheses testing with the two-parameter Pareto distribution on the basis of records in fuzzy environment JO - Kybernetika PY - 2014 SP - 744 EP - 757 VL - 50 IS - 5 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-5-0744/ DO - 10.14736/kyb-2014-5-0744 LA - en ID - 10_14736_kyb_2014_5_0744 ER -
%0 Journal Article %A Saeidi, Ali Reza %A Akbari, Mohammad Ghasem %A Doostparast, Mahdi %T Hypotheses testing with the two-parameter Pareto distribution on the basis of records in fuzzy environment %J Kybernetika %D 2014 %P 744-757 %V 50 %N 5 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-5-0744/ %R 10.14736/kyb-2014-5-0744 %G en %F 10_14736_kyb_2014_5_0744
Saeidi, Ali Reza; Akbari, Mohammad Ghasem; Doostparast, Mahdi. Hypotheses testing with the two-parameter Pareto distribution on the basis of records in fuzzy environment. Kybernetika, Tome 50 (2014) no. 5, pp. 744-757. doi: 10.14736/kyb-2014-5-0744
[1] Akbari, M. G., Arefi, M.: Statistical nonparametric test based on the intuitionistic fuzzy data. J. Intell. Fuzzy Systems 25 (2013), 525-534. | MR | Zbl
[2] Akbari, M. G., Rezaei, A.: An uniformly minimum variance unbiased point estimator using fuzzy observations. Austrian J. Statist. 36 (2007), 307-317.
[3] Akbari, M. G., Rezaei, A.: Bootstrap statistical inference for the variance based on fuzzy data. Austrian J. Statist. 38 (2009), 121-130.
[4] Akbari, M. G., Rezaei, A., Waghei, Y.: Statistical inference about the variance of fuzzy random variables. Sankhya 71-B (2009), 1-15. | MR | Zbl
[5] Akbari, M. G., Rezaei, A.: Bootstrap testing fuzzy hypotheses and observations on fuzzy statistic. Expert Systems Appl. 37 (2010), 8, 5782-5787.
[6] Arnold, B. C.: Pareto Distributions. International Co-operative Publishing House, Fairland 1983. | MR | Zbl
[7] Arnold, B. C., Balakrishnan, N., Nagaraja, H. N.: Records. John Wiley and Sons, New York 1998. | MR | Zbl
[8] Arnold, B. F.: An approach to fuzzy hypothesis testing. Metrika 44 (1996), 119-126. | DOI | MR | Zbl
[9] Arnold, B. F.: Testing fuzzy hypotheses with crisp data. Fuzzy Sets and Systems 94 (1998), 323-333. | DOI | MR | Zbl
[10] Buckley, J. J.: Fuzzy Probabilities: New Approach and Applications. Springer-Verlag, Berlin, Heidelberg 2005. | MR | Zbl
[11] Buckley, J. J.: Fuzzy Probability and Statistics. Springer-Verlag, Berlin, Heidelberg 2006. | Zbl
[12] Delgado, M., Verdegay, J. L., Vila, M. A.: Testing fuzzy hypotheses, a Bayesian approach. In: Approximate Reasoning in Expert Systems (M. M. Gupta, ed.) 1985, pp. 307-316. | MR
[13] Doostparast, M., Akbari, M. G., Balakrishnan, N.: Bayesian analysis for the two-parameter Pareto distribution based on record values and times. J. Stat. Comput. Simul. 81 (2011), 11, 1393-1403. | DOI | MR
[14] Doostparast, M., Balakrishnan, N.: Pareto record-based analysis. Statistics 47 (2013), 5, 1075-1089. | DOI | MR
[15] Dyer, D.: Structural probability bounds for the strong Pareto laws. Canad. J. Statist. 9 (1981), 71-77. | DOI | MR
[16] Filzmoser, P., Viertl, R.: Testing hypotheses with fuzzy data: the fuzzy $p-$value. Metrika 59 (2004), 21-29. | DOI | MR | Zbl
[17] Gonzalez-Rodriguez, G., Montenegro, M., Colubi, A., Gil, M. A.: Bootstrap techniques and fuzzy random variables: Synergy in hypothesis testing with fuzzy data. Fuzzy Sets and Systems 157 (2006), 2608-2613. | MR | Zbl
[18] Gulati, S., Padgett, W. J.: Smooth nonparametric estimation of the distribution and density functions from record-breaking data. Commun. Commun. Statist. - Theory and Methods 23 (1994), 1259-1274. | DOI | MR | Zbl
[19] Holena, M.: Fuzzy hypotheses for GUHA implications. Fuzzy Sets and Systems 98 (1998), 101-125. | DOI
[20] Holena, M.: Fuzzy hypotheses testing in the framework of fuzzy logic. Fuzzy Sets and Systems 145 (2004), 229-252. | DOI | MR | Zbl
[21] Körner, R.: An asymptotic $\alpha-$cut for the expectation of random fuzzy variables. J. Statist. Plann. Inferences 83 (2000), 331-346. | DOI | MR
[22] Montenegro, M., Colubi, A., Casals, M. R., Gil, M. A.: Asymptotic and bootstrap techniques for testing the expected value of a fuzzy random variable. Metrika 59 (2004), 31-49. | DOI | MR | Zbl
[23] Parchami, A., Taheri, S. M., Mashinchi, M.: Fuzzy p-value in testing fuzzy hypotheses with crisp data. Statist. Papers 51 (2010), 1, 209-226. | DOI | MR | Zbl
[24] Samaniego, F. J., Whitaker, L. R.: On estimating population characteristics from record-breaking observations II: NonParametric results. Naval Res. Logist. 35 (1988), 221-236. | DOI | MR | Zbl
[25] Taheri, S. M., Arefi, M.: Testing fuzzy hypotheses based on fuzzy statistics. Soft Computing 13 (2009), 617-625. | DOI
[26] Taheri, S. M., Behboodian, J.: Neyman-Pearson lemma for fuzzy hypotheses testing. Metrika 49 (1999), 3-17. | DOI | MR | Zbl
[27] Torabi, H., Behboodian, J., Taheri, S. M.: Neyman-Pearson Lemma for fuzzy hypotheses testing with vague data. Metrika 64 (2006), 289-304. | DOI | MR | Zbl
[28] Viertl, R.: Univariate statistical analysis with fuzzy data. Comput. Statist. Data Anal. 51 (2006), 133-147. | DOI | MR | Zbl
[29] Yao, J. S., Wu, K.: Ranking fuzzy numbers based on decomposition principle and signed distance. Fuzzy Sets and Systems 11 (2000), 275-288. | DOI | MR | Zbl
Cité par Sources :