Risk aversion, prudence and mixed optimal saving models
Kybernetika, Tome 50 (2014) no. 5, pp. 706-724
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The paper studies risk aversion and prudence of an agent in the face of a risk situation with two parameters, one described by a fuzzy number, the other described by a fuzzy variable. The first contribution of the paper is the characterization of risk aversion and prudence in mixed models by conditions on the concavity and the convexity of the agent's utility function and its partial derivatives. The second contribution is the building of mixed models of optimal saving and their connection with the concept of prudence and downside risk aversion.
The paper studies risk aversion and prudence of an agent in the face of a risk situation with two parameters, one described by a fuzzy number, the other described by a fuzzy variable. The first contribution of the paper is the characterization of risk aversion and prudence in mixed models by conditions on the concavity and the convexity of the agent's utility function and its partial derivatives. The second contribution is the building of mixed models of optimal saving and their connection with the concept of prudence and downside risk aversion.
DOI : 10.14736/kyb-2014-5-0706
Classification : 03E72, 91B30, 91B99, 94D05
Keywords: possibilistic risk aversion; prudence; optimal saving
@article{10_14736_kyb_2014_5_0706,
     author = {Georgescu, Irina},
     title = {Risk aversion, prudence and mixed optimal saving models},
     journal = {Kybernetika},
     pages = {706--724},
     year = {2014},
     volume = {50},
     number = {5},
     doi = {10.14736/kyb-2014-5-0706},
     mrnumber = {3301856},
     zbl = {1308.91082},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-5-0706/}
}
TY  - JOUR
AU  - Georgescu, Irina
TI  - Risk aversion, prudence and mixed optimal saving models
JO  - Kybernetika
PY  - 2014
SP  - 706
EP  - 724
VL  - 50
IS  - 5
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-5-0706/
DO  - 10.14736/kyb-2014-5-0706
LA  - en
ID  - 10_14736_kyb_2014_5_0706
ER  - 
%0 Journal Article
%A Georgescu, Irina
%T Risk aversion, prudence and mixed optimal saving models
%J Kybernetika
%D 2014
%P 706-724
%V 50
%N 5
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-5-0706/
%R 10.14736/kyb-2014-5-0706
%G en
%F 10_14736_kyb_2014_5_0706
Georgescu, Irina. Risk aversion, prudence and mixed optimal saving models. Kybernetika, Tome 50 (2014) no. 5, pp. 706-724. doi: 10.14736/kyb-2014-5-0706

[1] Arrow, K. J.: Essays in the theory of risk bearing. North-Holland, Amsterdam 1970. | MR | Zbl

[2] Carlsson, C., Fullér, R.: On possibilistic mean value and variance of fuzzy numbers. Fuzzy Sets Syst. 122 (2001), 315-326. | MR | Zbl

[3] Carlsson, C., Fullér, R.: Possibility for Decision. Springer 2011. | MR | Zbl

[4] Courbage, C., Rey, B.: Precautionary saving in the presence of other risks. Econom. Theory 32 (2007), 417-424. | DOI | MR | Zbl

[5] Courbage, C., Rey, B.: On the shape of non-monetary measures in the face of risk. In: The 36th Seminar of the European Group of Risk and Insurance Economists (EGRIE), Bergen 2009.

[6] Crainich, D., Eeckhoudt, L.: On the intensity of downside risk aversion. J. Risk Uncertainty 36 (2008), 267-276. | DOI | Zbl

[7] Dubois, D., Prade, H.: Fuzzy Sets and Systems: Theory and Applications. Academic Press, New York 1980. | MR | Zbl

[8] Dubois, D., Prade, H.: Possibility Theory. Plenum Press, New York 1988. | MR | Zbl

[9] Duncan, G. T.: A matrix measure of multivariate local risk aversion. Econometrica 45 (1977), 895-903. | DOI | MR | Zbl

[10] Eeckhoudt, L., Schlesinger, H.: Putting risk in its proper place. Amer. Econom. Rev. 96 (2006), 280-289. | DOI

[11] Eeckhoudt, L., Gollier., C., Schlesinger, H.: Economic and Financial Decisions under Risk. Princeton University Press, 2005.

[12] Friedman, M., Savage, L.: The utility analysis of choices involving risk. J. Polit. Econom. 56 (1948), 279-304. | DOI

[13] Fullér, R., Majlender, P.: On weighted possibilistic mean and variance of fuzzy numbers. Fuzzy Sets Syst. 136 (2003), 363-374. | MR | Zbl

[14] Georgescu, I.: Possibilistic risk aversion. Fuzzy Sets Syst. 60 (2009), 2608-2619. | MR | Zbl

[15] Georgescu, I.: A possibilistic approach to risk aversion. Soft Comput. 15 (2011), 795-801. | DOI | Zbl

[16] Georgescu, I., Kinnunen, J.: Multidimensional risk aversion with mixed parameters. In: The 6th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI 2011), Timisoara 2011, pp. 63-68.

[17] Gollier, C.: The Economics of Risk and Time. MIT Press, 2004. | Zbl

[18] Hellwig, M.: Risk aversion in the small and in the large when outcomes are multidimensional. Preprints of the Max Planck Institute for Research on Collective Goods, Bonn 2006. | MR

[19] Jouini, E., Napp, C., Nocetti, D.: On multivariate prudence. J. Econom. Theory. 148 (2013), 1255-1267. | DOI | MR | Zbl

[20] Karni, E.: On multivariate risk aversion. Econometrica 47 (1979), 1391-1401. | DOI | MR | Zbl

[21] Kimball, M.: Precautionary saving in the small and in the large. Econometrica 58 (1990), 58-73. | DOI | MR

[22] Leland, H. E.: Saving and uncertainty: the precautionary demand for saving. Quarterly J. Econom. 82 (1968), 465-473. | DOI

[23] Menegatti, M.: Optimal saving saving in the presence of two risks. J. Econom. 96 (2009), 277-288.

[24] Menezes, C., Geiss, C., Tressler, J.: Increasing downside risk. Amer. Econom. Rev. 70 (1980), 921-932.

[25] Niculescu, C. P., Perrson, L. E.: Convex Functions and their Applications: A Contemporary Approach. Springer, 2005. | MR

[26] Pratt, J.: Risk aversion in the small and in the large. Econometrica 32 (1964), 122-130. | DOI | Zbl

[27] Sandmo, A.: The effect of uncertainty on saving decision. Rev. Econom. Studies 37 (1970), 353-360. | DOI

[28] Zadeh, L. A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1 (1978), 3-28. | MR | Zbl

[29] Zhang, W. G., Wang, Y. L.: A comparative study of possibilistic variances and covariances of fuzzy numbers. Fund. Inform. 79 (2007), 257-263. | MR

Cité par Sources :