Keywords: fuzzy connectives; fuzzy implication; distributivity; functional equations
@article{10_14736_kyb_2014_5_0679,
author = {Baczy\'nski, Micha{\l} and Szostok, Tomasz and Niemyska, Wanda},
title = {On a functional equation connected to the distributivity of fuzzy implications over triangular norms and conorms},
journal = {Kybernetika},
pages = {679--695},
year = {2014},
volume = {50},
number = {5},
doi = {10.14736/kyb-2014-5-0679},
mrnumber = {3301854},
zbl = {06410697},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-5-0679/}
}
TY - JOUR AU - Baczyński, Michał AU - Szostok, Tomasz AU - Niemyska, Wanda TI - On a functional equation connected to the distributivity of fuzzy implications over triangular norms and conorms JO - Kybernetika PY - 2014 SP - 679 EP - 695 VL - 50 IS - 5 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-5-0679/ DO - 10.14736/kyb-2014-5-0679 LA - en ID - 10_14736_kyb_2014_5_0679 ER -
%0 Journal Article %A Baczyński, Michał %A Szostok, Tomasz %A Niemyska, Wanda %T On a functional equation connected to the distributivity of fuzzy implications over triangular norms and conorms %J Kybernetika %D 2014 %P 679-695 %V 50 %N 5 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-5-0679/ %R 10.14736/kyb-2014-5-0679 %G en %F 10_14736_kyb_2014_5_0679
Baczyński, Michał; Szostok, Tomasz; Niemyska, Wanda. On a functional equation connected to the distributivity of fuzzy implications over triangular norms and conorms. Kybernetika, Tome 50 (2014) no. 5, pp. 679-695. doi: 10.14736/kyb-2014-5-0679
[1] Baczyński, M.: On a class of distributive fuzzy implications. Int. J. Uncertain. Fuzziness Knowledge-Based Systems 9 (2001), 229-238. | DOI | MR | Zbl
[2] Baczyński, M.: On the distributivity of fuzzy implications over continuous and Archimedean triangular conorms. Fuzzy Sets and Systems 161 (2010), 1406-1419. | MR | Zbl
[3] Baczyński, M.: On the distributivity of fuzzy implications over representable uninorms. Fuzzy Sets and Systems 161 (2010), 2256-2275. | MR | Zbl
[4] Baczyński, M., Jayaram, B.: Fuzzy Implications. Studies in Fuzziness and Soft Computing 231, Springer, Berlin Heidelberg 2008. | Zbl
[5] Baczyński, M., Jayaram, B.: On the distributivity of fuzzy implications over nilpotent or strict triangular conorms. IEEE Trans. Fuzzy Syst. 17 (2009), 590-603. | DOI
[6] Baczyński, M., Qin, F.: Some remarks on the distributive equation of fuzzy implication and the contrapositive symmetry for continuous, Archimedean t-norms. Int. J. Approx. Reason. 54 (2013), 290-296. | DOI | MR | Zbl
[7] Baczyński, M., Szostok, T., Niemyska, W.: On a functional equation related to distributivity of fuzzy implications. In: 2013 IEEE International Conference on Fuzzy Systems (FUZZ IEEE 2013) Hyderabad 2013, pp. 1-5.
[8] Balasubramaniam, J., Rao, C. J. M.: On the distributivity of implication operators over T and S norms. IEEE Trans. Fuzzy Syst. 12 (2004), 194-198. | DOI
[9] Combs, W. E., Andrews, J. E.: Combinatorial rule explosion eliminated by a fuzzy rule configuration. IEEE Trans. Fuzzy Syst. 6 (1998), 1-11. | DOI
[10] Combs, W. E.: Author's reply. IEEE Trans. Fuzzy Syst. 7 (1999), 371-373. | DOI
[11] Combs, W. E.: Author's reply. IEEE Trans. Fuzzy Syst. 7 (1999), 477-478. | DOI
[12] Baets, B. De: Fuzzy morphology: A logical approach. In: Uncertainty Analysis in Engineering and Science: Fuzzy Logic, Statistics, and Neural Network Approach (B. M. Ayyub and M. M. Gupta, eds.), Kluwer Academic Publishers, Norwell 1997, pp. 53-68. | Zbl
[13] Dick, S., Kandel, A.: Comments on ``Combinatorial rule explosion eliminated by a fuzzy rule configuration". IEEE Trans. Fuzzy Syst. 7 (1999), 475-477. | DOI
[14] González-Hidalgo, M., Massanet, S., Mir, A., Ruiz-Aguilera, D.: Fuzzy hit-or-miss transform using the fuzzy mathematical morphology based on T-norms. In: Aggregation Functions in Theory and in Practise (H. Bustince et al., eds.), Advances in Intelligent Systems and Computing 228, Springer, Berlin - Heidelberg 2013, pp. 391-403. | Zbl
[15] Jayaram, B.: Rule reduction for efficient inferencing in similarity based reasoning. Int. J. Approx. Reason. 48 (2008), 156-173. | DOI | MR | Zbl
[16] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000. | MR | Zbl
[17] Kuczma, M.: An Introduction to the Theory of Functional Equations and Inequalities. Cauchy's Equation and Jensen's Inequality. Państwowe Wydawnictwo Naukowe (Polish Scientific Publishers) and Uniwersytet Śląski, Warszawa-Kraków-Katowice 1985. | MR | Zbl
[18] Ling, C. H.: Representation of associative functions. Publ. Math. Debrecen 12 (1965), 189-212. | MR | Zbl
[19] Mendel, J. M., Liang, Q.: Comments on ``Combinatorial rule explosion eliminated by a fuzzy rule configuration". IEEE Trans. Fuzzy Syst. 7 (1999), 369-371. | DOI
[20] Qin, F., Baczyński, M., Xie, A.: Distributive equations of implications based on continuous triangular norms (I). IEEE Trans. Fuzzy Syst. 20 (2012), 153-167. | DOI
[21] Qin, F., Yang, L.: Distributive equations of implications based on nilpotent triangular norms. Int. J. Approx. Reason. 51 (2010), 984-992. | DOI | MR | Zbl
[22] Ruiz-Aguilera, D., Torrens, J.: Distributivity of strong implications over conjunctive and disjunctive uninorms. Kybernetika 42 (2006), 319-336. | MR | Zbl
[23] Ruiz-Aguilera, D., Torrens, J.: Distributivity of residual implications over conjunctive and disjunctive uninorms. Fuzzy Sets and Systems 158 (2007), 23-37. | MR | Zbl
[24] Trillas, E., Alsina, C.: On the law $[(p\wedge q)\to r]=[(p\to r)\vee(q\to r)]$ in fuzzy logic. IEEE Trans. Fuzzy Syst. 10 (2002), 84-88.
Cité par Sources :