On a functional equation connected to the distributivity of fuzzy implications over triangular norms and conorms
Kybernetika, Tome 50 (2014) no. 5, pp. 679-695
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Distributivity of fuzzy implications over different fuzzy logic connectives have a very important role to play in efficient inferencing in approximate reasoning, especially in fuzzy control systems (see [9, 15] and [4]). Recently in some considerations connected with these distributivity laws, the following functional equation appeared (see [5]) $$ f(\min(x+y,a))=\min(f(x)+f(y),b), $$ where $a,b>0$ and $f\colon[0,a]\to[0,b]$ is an unknown function. In this paper we consider in detail a generalized version of this equation, namely the equation $$ f(m_1(x+y))=m_2(f(x)+f(y)), $$ where $m_1,m_2$ are functions defined on some intervals of ${\mathbb R}$ satisfying additional assumptions. We analyze the cases when $m_2$ is injective and when $m_2$ is not injective.
Distributivity of fuzzy implications over different fuzzy logic connectives have a very important role to play in efficient inferencing in approximate reasoning, especially in fuzzy control systems (see [9, 15] and [4]). Recently in some considerations connected with these distributivity laws, the following functional equation appeared (see [5]) $$ f(\min(x+y,a))=\min(f(x)+f(y),b), $$ where $a,b>0$ and $f\colon[0,a]\to[0,b]$ is an unknown function. In this paper we consider in detail a generalized version of this equation, namely the equation $$ f(m_1(x+y))=m_2(f(x)+f(y)), $$ where $m_1,m_2$ are functions defined on some intervals of ${\mathbb R}$ satisfying additional assumptions. We analyze the cases when $m_2$ is injective and when $m_2$ is not injective.
DOI : 10.14736/kyb-2014-5-0679
Classification : 03B52, 03E72, 39B05, 39B22, 39B99
Keywords: fuzzy connectives; fuzzy implication; distributivity; functional equations
@article{10_14736_kyb_2014_5_0679,
     author = {Baczy\'nski, Micha{\l} and Szostok, Tomasz and Niemyska, Wanda},
     title = {On a functional equation connected to the distributivity of fuzzy implications over triangular norms and conorms},
     journal = {Kybernetika},
     pages = {679--695},
     year = {2014},
     volume = {50},
     number = {5},
     doi = {10.14736/kyb-2014-5-0679},
     mrnumber = {3301854},
     zbl = {06410697},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-5-0679/}
}
TY  - JOUR
AU  - Baczyński, Michał
AU  - Szostok, Tomasz
AU  - Niemyska, Wanda
TI  - On a functional equation connected to the distributivity of fuzzy implications over triangular norms and conorms
JO  - Kybernetika
PY  - 2014
SP  - 679
EP  - 695
VL  - 50
IS  - 5
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-5-0679/
DO  - 10.14736/kyb-2014-5-0679
LA  - en
ID  - 10_14736_kyb_2014_5_0679
ER  - 
%0 Journal Article
%A Baczyński, Michał
%A Szostok, Tomasz
%A Niemyska, Wanda
%T On a functional equation connected to the distributivity of fuzzy implications over triangular norms and conorms
%J Kybernetika
%D 2014
%P 679-695
%V 50
%N 5
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-5-0679/
%R 10.14736/kyb-2014-5-0679
%G en
%F 10_14736_kyb_2014_5_0679
Baczyński, Michał; Szostok, Tomasz; Niemyska, Wanda. On a functional equation connected to the distributivity of fuzzy implications over triangular norms and conorms. Kybernetika, Tome 50 (2014) no. 5, pp. 679-695. doi: 10.14736/kyb-2014-5-0679

[1] Baczyński, M.: On a class of distributive fuzzy implications. Int. J. Uncertain. Fuzziness Knowledge-Based Systems 9 (2001), 229-238. | DOI | MR | Zbl

[2] Baczyński, M.: On the distributivity of fuzzy implications over continuous and Archimedean triangular conorms. Fuzzy Sets and Systems 161 (2010), 1406-1419. | MR | Zbl

[3] Baczyński, M.: On the distributivity of fuzzy implications over representable uninorms. Fuzzy Sets and Systems 161 (2010), 2256-2275. | MR | Zbl

[4] Baczyński, M., Jayaram, B.: Fuzzy Implications. Studies in Fuzziness and Soft Computing 231, Springer, Berlin Heidelberg 2008. | Zbl

[5] Baczyński, M., Jayaram, B.: On the distributivity of fuzzy implications over nilpotent or strict triangular conorms. IEEE Trans. Fuzzy Syst. 17 (2009), 590-603. | DOI

[6] Baczyński, M., Qin, F.: Some remarks on the distributive equation of fuzzy implication and the contrapositive symmetry for continuous, Archimedean t-norms. Int. J. Approx. Reason. 54 (2013), 290-296. | DOI | MR | Zbl

[7] Baczyński, M., Szostok, T., Niemyska, W.: On a functional equation related to distributivity of fuzzy implications. In: 2013 IEEE International Conference on Fuzzy Systems (FUZZ IEEE 2013) Hyderabad 2013, pp. 1-5.

[8] Balasubramaniam, J., Rao, C. J. M.: On the distributivity of implication operators over T and S norms. IEEE Trans. Fuzzy Syst. 12 (2004), 194-198. | DOI

[9] Combs, W. E., Andrews, J. E.: Combinatorial rule explosion eliminated by a fuzzy rule configuration. IEEE Trans. Fuzzy Syst. 6 (1998), 1-11. | DOI

[10] Combs, W. E.: Author's reply. IEEE Trans. Fuzzy Syst. 7 (1999), 371-373. | DOI

[11] Combs, W. E.: Author's reply. IEEE Trans. Fuzzy Syst. 7 (1999), 477-478. | DOI

[12] Baets, B. De: Fuzzy morphology: A logical approach. In: Uncertainty Analysis in Engineering and Science: Fuzzy Logic, Statistics, and Neural Network Approach (B. M. Ayyub and M. M. Gupta, eds.), Kluwer Academic Publishers, Norwell 1997, pp. 53-68. | Zbl

[13] Dick, S., Kandel, A.: Comments on ``Combinatorial rule explosion eliminated by a fuzzy rule configuration". IEEE Trans. Fuzzy Syst. 7 (1999), 475-477. | DOI

[14] González-Hidalgo, M., Massanet, S., Mir, A., Ruiz-Aguilera, D.: Fuzzy hit-or-miss transform using the fuzzy mathematical morphology based on T-norms. In: Aggregation Functions in Theory and in Practise (H. Bustince et al., eds.), Advances in Intelligent Systems and Computing 228, Springer, Berlin - Heidelberg 2013, pp. 391-403. | Zbl

[15] Jayaram, B.: Rule reduction for efficient inferencing in similarity based reasoning. Int. J. Approx. Reason. 48 (2008), 156-173. | DOI | MR | Zbl

[16] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000. | MR | Zbl

[17] Kuczma, M.: An Introduction to the Theory of Functional Equations and Inequalities. Cauchy's Equation and Jensen's Inequality. Państwowe Wydawnictwo Naukowe (Polish Scientific Publishers) and Uniwersytet Śląski, Warszawa-Kraków-Katowice 1985. | MR | Zbl

[18] Ling, C. H.: Representation of associative functions. Publ. Math. Debrecen 12 (1965), 189-212. | MR | Zbl

[19] Mendel, J. M., Liang, Q.: Comments on ``Combinatorial rule explosion eliminated by a fuzzy rule configuration". IEEE Trans. Fuzzy Syst. 7 (1999), 369-371. | DOI

[20] Qin, F., Baczyński, M., Xie, A.: Distributive equations of implications based on continuous triangular norms (I). IEEE Trans. Fuzzy Syst. 20 (2012), 153-167. | DOI

[21] Qin, F., Yang, L.: Distributive equations of implications based on nilpotent triangular norms. Int. J. Approx. Reason. 51 (2010), 984-992. | DOI | MR | Zbl

[22] Ruiz-Aguilera, D., Torrens, J.: Distributivity of strong implications over conjunctive and disjunctive uninorms. Kybernetika 42 (2006), 319-336. | MR | Zbl

[23] Ruiz-Aguilera, D., Torrens, J.: Distributivity of residual implications over conjunctive and disjunctive uninorms. Fuzzy Sets and Systems 158 (2007), 23-37. | MR | Zbl

[24] Trillas, E., Alsina, C.: On the law $[(p\wedge q)\to r]=[(p\to r)\vee(q\to r)]$ in fuzzy logic. IEEE Trans. Fuzzy Syst. 10 (2002), 84-88.

Cité par Sources :