Keywords: classifier; performance evaluation; misclassification costs; cost curves; ROC curves; AUC
@article{10_14736_kyb_2014_5_0647,
author = {Montvida, Olga and Klawonn, Frank},
title = {Relative cost curves: {An} alternative to {AUC} and an extension to 3-class problems},
journal = {Kybernetika},
pages = {647--660},
year = {2014},
volume = {50},
number = {5},
doi = {10.14736/kyb-2014-5-0647},
mrnumber = {3301852},
zbl = {1305.93195},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-5-0647/}
}
TY - JOUR AU - Montvida, Olga AU - Klawonn, Frank TI - Relative cost curves: An alternative to AUC and an extension to 3-class problems JO - Kybernetika PY - 2014 SP - 647 EP - 660 VL - 50 IS - 5 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-5-0647/ DO - 10.14736/kyb-2014-5-0647 LA - en ID - 10_14736_kyb_2014_5_0647 ER -
%0 Journal Article %A Montvida, Olga %A Klawonn, Frank %T Relative cost curves: An alternative to AUC and an extension to 3-class problems %J Kybernetika %D 2014 %P 647-660 %V 50 %N 5 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-5-0647/ %R 10.14736/kyb-2014-5-0647 %G en %F 10_14736_kyb_2014_5_0647
Montvida, Olga; Klawonn, Frank. Relative cost curves: An alternative to AUC and an extension to 3-class problems. Kybernetika, Tome 50 (2014) no. 5, pp. 647-660. doi: 10.14736/kyb-2014-5-0647
[1] Bradley, A. P.: The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition 30 (1997), 1145-1159. | DOI
[2] Drummond, C., Holte, R. C.: Cost curves: An improved method for visualizing classifier performance. Machine Learning 65 (2006) 95-130. | DOI
[3] Fawcett, T.: An introduction to roc analysis. Pattern Recognition Lett. 27 (2006), 861-874. | DOI
[4] Hand, D. J.: Measuring classifier performance: a coherent alternative to the area under the ROC curve. Machine Learning 77 (2009), 103-123. | DOI
[5] Hand, D. J., Till, R. J.: A simple generalisation of the area under the ROC curve for multiple class classification problems. Machine Learning 45 (2001), 171-186. | DOI | Zbl
[6] Hanley, J. A.: Receiver operating characteristic (ROC) methodology: the state of the art. Critical Reviews in Diagnostic Imaging 29 (1989), 307-335.
[7] Hernández-Orallo, J., Flach, P., Ferri, C.: Brier curves: a new cost-based visualisation of classifier performance. In: Proc. 28th International Conference on Machine Learning (ICML-11) (L. Getoor and T. Scheffer, eds.), ACM, New York 2011, pp. 585-592.
[8] Klawonn, F., Höppner, F., May, S.: An alternative to ROC and AUC analysis of classifiers. In: Advances in Intelligent Data Analysis X, (J. Gama, E. Bradley, and J. Hollmén, eds.), Springer, Berlin 2011, p. 210-221.
[9] Krzanowski, W. J., Hand, D. J.: ROC Curves for Continuous data. Chapman and Hall, London 2009. | MR | Zbl
[10] Li, J., Fine, J. P.: ROC analysis with multiple classes and multiple tests: methodology and its application in microarray studies. Biostatistics 9 (2008), 566-576. | DOI | Zbl
[11] Murphy, P. M., Aha, D. W.: Uci repository of machine learning databases. 1992. Avaible: http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
[12] Mossman, D.: Three-way ROCs. Medical Decision Making 19 (1999), 78-89. | DOI
Cité par Sources :