Switched modified function projective synchronization between two complex nonlinear hyperchaotic systems based on adaptive control and parameter identification
Kybernetika, Tome 50 (2014) no. 4, pp. 632-642
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper investigates adaptive switched modified function projective synchronization between two complex nonlinear hyperchaotic systems with unknown parameters. Based on adaptive control and parameter identification, corresponding adaptive controllers with appropriate parameter update laws are constructed to achieve switched modified function projective synchronization between two different complex nonlinear hyperchaotic systems and to estimate the unknown system parameters. A numerical simulation is presented to demonstrate the validity and feasibility of the proposed controllers and update laws.
This paper investigates adaptive switched modified function projective synchronization between two complex nonlinear hyperchaotic systems with unknown parameters. Based on adaptive control and parameter identification, corresponding adaptive controllers with appropriate parameter update laws are constructed to achieve switched modified function projective synchronization between two different complex nonlinear hyperchaotic systems and to estimate the unknown system parameters. A numerical simulation is presented to demonstrate the validity and feasibility of the proposed controllers and update laws.
DOI : 10.14736/kyb-2014-4-0632
Classification : 34C28, 34D06, 34H10
Keywords: modified function projective synchronization; switched state; hyperchaotic system; complex variable; adaptive control
@article{10_14736_kyb_2014_4_0632,
     author = {Zhou, Xiaobing and Jiang, Murong and Huang, Yaqun},
     title = {Switched modified function projective synchronization between two complex nonlinear hyperchaotic systems based on adaptive control and parameter identification},
     journal = {Kybernetika},
     pages = {632--642},
     year = {2014},
     volume = {50},
     number = {4},
     doi = {10.14736/kyb-2014-4-0632},
     mrnumber = {3275089},
     zbl = {06386431},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-4-0632/}
}
TY  - JOUR
AU  - Zhou, Xiaobing
AU  - Jiang, Murong
AU  - Huang, Yaqun
TI  - Switched modified function projective synchronization between two complex nonlinear hyperchaotic systems based on adaptive control and parameter identification
JO  - Kybernetika
PY  - 2014
SP  - 632
EP  - 642
VL  - 50
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-4-0632/
DO  - 10.14736/kyb-2014-4-0632
LA  - en
ID  - 10_14736_kyb_2014_4_0632
ER  - 
%0 Journal Article
%A Zhou, Xiaobing
%A Jiang, Murong
%A Huang, Yaqun
%T Switched modified function projective synchronization between two complex nonlinear hyperchaotic systems based on adaptive control and parameter identification
%J Kybernetika
%D 2014
%P 632-642
%V 50
%N 4
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-4-0632/
%R 10.14736/kyb-2014-4-0632
%G en
%F 10_14736_kyb_2014_4_0632
Zhou, Xiaobing; Jiang, Murong; Huang, Yaqun. Switched modified function projective synchronization between two complex nonlinear hyperchaotic systems based on adaptive control and parameter identification. Kybernetika, Tome 50 (2014) no. 4, pp. 632-642. doi: 10.14736/kyb-2014-4-0632

[1] Bhowmick, S. K., Pal, P., Roy, P. K., Dana, S. K.: Lag synchronization and scaling of chaotic attractor in coupled system. Chaos 22 (2012), 023151. | DOI

[2] Chen, Y., Li, X.: Function projective synchronization between two identical chaotic systems. Int. J. Mod. Phys. C 18 (2007), 883-888. | DOI

[3] Chen, Y., Lü, J., Yu, X., Lin, Z.: Consensus of discrete-time second-order multiagent systems based on infinite products of general stochastic matrices. SIAM J. Control Optim. 51 (2013), 3274-3301. | DOI | MR | Zbl

[4] Chen, Y., Lü, J., Lin, Z.: Consensus of discrete-time multi-agent systems with transmission nonlinearity. Automatica 49 (2013), 1768-1775. | DOI | MR

[5] Chen, Y., Lü, J., Yu, X., Hill, D.: Multi-agent systems with dynamical topologies: Consensus and applications. IEEE Circuits Syst. Magazine 13 (2013), 21-34. | DOI

[6] Du, H. Y., Zeng, Q. S., Wang, C. H.: Modified function projective synchronization of chaotic system. Chaos Solitons Fractals 42 (2009), 2399-2404. | DOI | Zbl

[7] Elabbasy, E. M., El-Dessoky, M. M.: Adaptive feedback control for the projective synchronization of the Lü dynamical system and its application to secure communication. Chin. J. Phys. 48 (2010), 863-872.

[8] Feng, C. F., Zhang, Y., Sun, J. T., Qi, W., Wang, Y. H.: Generalized projective synchronization in time-delayed chaotic systems. Chaos, Solitons Fractals 38 (2008), 743-747. | DOI | Zbl

[9] Fowler, A. C., Gibbon, J. D., McGuinness, M. J.: The complex Lorenz equations. Physica D 4 (1982), 139-163. | DOI | MR | Zbl

[10] Grassi, G.: Generalized synchronization between different chaotic maps via dead-beat control. Chin. Phys. B 21 (2012), 050505. | DOI

[11] Lambert, J. D.: Numerical Methods for Ordinary Differential Systems: The Initial Value Problem. Wiley, New York 1991. | MR | Zbl

[12] Li, G. H.: Modified projective synchronization of chaotic system. Chaos Solitons Fractals 32 (2007), 1786-1790. | DOI | MR | Zbl

[13] Liu, P., Liu, S. T., Li, X.: Adaptive modified function projective synchronization of general uncertain chaotic complex systems. Phys. Scr. 85 (2012), 035005. | DOI

[14] Lynnyk, V., Čelikovský, S.: On the anti-synchronization detection for the generalized lorenz system and its applications to secure encryption. Kybernetika 46 (2010) 1-18. | MR | Zbl

[15] Ma, J., Li, F., Huang, L., Jin, W. Y.: Complete synchronization, phase synchronization and parameters estimation in a realistic chaotic system. Commun. Nonlinear Sci. Numer. Simul. 16 (2011), 3770-3785. | DOI | Zbl

[16] Ma, M. H., Zhang, H., Cai, J. P., al., et: Impulsive practical synchronization of n-dimensional nonautonomous systems with parameter mismatch. Kybernetika 49 (2013), 539-553. | MR

[17] Mahmoud, G. M., Mahmoud, E. E.: Complete synchronization of chaotic complex nonlinear systems with uncertain parameters. Nonlinear Dyn. 62 (2010), 875-882. | Zbl

[18] Mahmoud, G. M., Farghaly, A. A. M.: Chaos control of chaotic limit cycles of real and complex van der Pol oscillators. Chaos Solitons Fractals 21 (2004), 915-924. | DOI | MR | Zbl

[19] Mahmoud, G.M., Bountis, T., Mahmoud, E. E.: Active control and global synchronization of the complex Chen and Lü systems. Int. J. Bifur. Chaos 17 (2007), 4295-4308. | DOI | MR | Zbl

[20] Mahmoud, G. M., Mahmoud, E. E., Ahmed, M. E.: A hyperchaotic complex Chen system and its dynamics. Int. J. Appl. Math. Stat. 12 (2007), 90-100. | MR | Zbl

[21] Mahmoud, G. M., Ahmed, M. E., Mahmoud, E. E.: Analysis of hyperchaotic complex Lorenz systems. Int. J. Mod. Phys. C 19 (2008), 1477-1494. | DOI | Zbl

[22] Mahmoud, G. M., Mahmoud, E. E., Ahmed, M. E.: On the hyperchaotic complex Lü system. Nonlinear Dyn. 58 (2009), 725-738. | MR | Zbl

[23] Mahmoud, G. M., Al-Kashif, M. A., Farghaly, A. A.: Chaotic and hyperchaotic attractors of a complex nonlinear system. J. Phys. A: Math. Theor. 41 (2008), 055104. | DOI | MR | Zbl

[24] Mahmoud, G. M., Ahmed, M. E., Sabor, N.: On autonomous and nonautonomous modified hyperchaotic complex Lü systems. Int. J. Bifur. Chaos 21 (2011), 1913-1926. | DOI | MR | Zbl

[25] Mahmoud, G. M., Ahmed, M. E.: A hyperchaotic complex system generating two-, three-, and four-scroll attractors. J. Vib. Control 18 (2012), 841-849. | DOI | MR

[26] Mainieri, R., Rehacek, J.: Projective synchronization in three-dimensioned chaotic systems. Phys. Rev. Lett. 82 (1999), 3042-3045. | DOI

[27] Pecora, L. M., Carroll, T. L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64 (1990), 821-824. | DOI | MR | Zbl

[28] Shen, C., Yu, S., Lu, J., Chen, G.: A systematic methodology for constructing hyperchaotic systems with multiple positive Lyapunov exponents and circuit implementation. IEEE Trans. Circuits Syst. I 61 (2014), 854-864. | DOI

[29] Sudheer, K. S., Sabir, M.: Switched modified function projective synchronization of hyperchaotic Qi system with uncertain parameters. Commun. Nonlinear Sci. Numer. Simul. 15 (2010), 4058-4064. | DOI

[30] Wang, J. W., Chen, A. M.: Partial synchronization in coupled chemical chaotic oscillators. J. Comp. Appl. Math. 233 (2010), 1897-1904. | DOI | MR | Zbl

[31] Wu, X. J., Wang, H., Lu, H. T.: Modified generalized projective synchronization of a new fractional-order hyperchaotic system and its application to secure communication. Nonlinear Anal.: Real World Appl. 13 (2012), 1441-1450. | MR | Zbl

[32] Yu, F., Wang, C. H., Wan, Q. Z., Hu, Y.: Complete switched modified function projective synchronization of a five-term chaotic system with uncertain parameters and disturbances. Pramana 80 (2013), 223-235. | DOI

[33] Zhou, P., Zhu, W.: Function projective synchronization for fractional-order chaotic systems. Nonlinear Anal.: Real World Appl. 12 (2011), 811-816. | MR | Zbl

Cité par Sources :