Keywords: Hopf bifurcation; center manifold theorem; Poincare compactification; robust modified function projective synchronization; chaotic systems
@article{10_14736_kyb_2014_4_0616,
author = {Wang, Zhen and Sun, Wei and Wei, Zhouchao and Xi, Xiaojian},
title = {Dynamics analysis and robust modified function projective synchronization of {Sprott} {E} system with quadratic perturbation},
journal = {Kybernetika},
pages = {616--631},
year = {2014},
volume = {50},
number = {4},
doi = {10.14736/kyb-2014-4-0616},
mrnumber = {3275088},
zbl = {06386430},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-4-0616/}
}
TY - JOUR AU - Wang, Zhen AU - Sun, Wei AU - Wei, Zhouchao AU - Xi, Xiaojian TI - Dynamics analysis and robust modified function projective synchronization of Sprott E system with quadratic perturbation JO - Kybernetika PY - 2014 SP - 616 EP - 631 VL - 50 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-4-0616/ DO - 10.14736/kyb-2014-4-0616 LA - en ID - 10_14736_kyb_2014_4_0616 ER -
%0 Journal Article %A Wang, Zhen %A Sun, Wei %A Wei, Zhouchao %A Xi, Xiaojian %T Dynamics analysis and robust modified function projective synchronization of Sprott E system with quadratic perturbation %J Kybernetika %D 2014 %P 616-631 %V 50 %N 4 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-4-0616/ %R 10.14736/kyb-2014-4-0616 %G en %F 10_14736_kyb_2014_4_0616
Wang, Zhen; Sun, Wei; Wei, Zhouchao; Xi, Xiaojian. Dynamics analysis and robust modified function projective synchronization of Sprott E system with quadratic perturbation. Kybernetika, Tome 50 (2014) no. 4, pp. 616-631. doi: 10.14736/kyb-2014-4-0616
[1] Chen, G. R., Ueta, T.: Yet another chaotic attractor. Int. J. Bifur. Chaos 9 (1999), 1465-1466. | DOI | MR | Zbl
[2] Chen, Y., Cao, L., Sun, M.: Robust midified function projective synchronization in network with unknown parameters and mismatch parameters. Int. J. Nonlinear Sci. 10 (2010), 17-23. | MR
[3] Chen, Y., Lü, J. H., Lin, Z. L.: Consensus of discrete-time multi-agent systems with transmission nonlinearity. Automatica 49 (2013), 1768-1775. | DOI | MR
[4] Chen, Y., Lü, J. H., Yu, X. H., Hill, D. J.: Multi-agent systems with dynamical topologies: Consensus and applications. IEEE Circuits Syst. Magazine 13 (2013), 21-34. | DOI
[5] Chen, Y., Lü, J. H., Yu, X. H., Lin, Z. L.: Consensus of discrete-time second order multi-agent systems based on infinite products of general stochastic matrices. SIAM J. Control Optim. 51 (2013), 3274-3301. | DOI | MR
[6] Cima, A., Llibre, J.: Bounded polynomial vector field. T. Amer. Math. Soc. 318 (1990), 557-579. | DOI | MR
[7] Dumortier, F., Llibre, J., Artes, J. C.: Qualitative Theory of Planar Differential Systems. Springer, Berlin 2006. | MR | Zbl
[8] Kuznetsov, A. P., Kuznetsov, S. P., Stankevich, N. V.: A simple autonomous quasiperiodic self-oscillator. Commun. Nonlinear Sci. Numer. Simul. 15 (2010), 1676-1681. | DOI
[9] Kuznetsov, Y. A.: Elements of Applied Bifurcation Theory. Springer-Verlag, New York 1998. | MR | Zbl
[10] Lee, T. H., Park, J. H.: Adaptive functional projective lag synchronization of a hyperchaotic Rössler system. Chin. Phys. Lett. 26 (2009), 090507. | DOI
[11] Leonov, G. A., Kuznetsov, N. V.: Prediction of hidden oscillations existence in nonlinear dynamical systems: analytics and simulation. Adv. Intelligent Syst. Comput. 210 (2013), 5-13. | DOI | Zbl
[12] Leonov, G. A., Kuznetsov, N. V., Vagaitsev, V. I.: Localization of hidden Chua's attractors. Phys. Lett. A 375 (2011), 2230-2233. | DOI | MR | Zbl
[13] Liang, H. T., Wang, Z., Yue, Z. M., Lu, R. H.: Generalized synchronization and control for incommensurate fractional unified chaotic system and applications in secure communication. Kybernetika 48 (2012), 190-205. | MR | Zbl
[14] Liu, Y. J.: Analysis of global dynamics in an unusual 3D chaotic system. Nonlinear Dyn. 70 (2012), 2203-2212. | MR | Zbl
[15] Liu, Y. J., Yang, Q. G.: Dynamics of the Lü system on the invariant algebraic surface and at infinity. Int. J. Bifur. Chaos 21 (2011), 2559-2582. | DOI | MR | Zbl
[16] Lorenz, E. N.: Deterministic non-periodic flow. J. Atmospheric Sci. 20 (1963), 130-141. | DOI
[17] Messias, M., Gouveia, M. R.: Dynamics at infinity and other global dynamical aspects of Shimizu-Morioka equations. Nonlinear Dyn. 69 (2012), 577-587. | DOI | MR | Zbl
[18] Shen, C. W., Yu, S. M., Lü, J. H., Chen, G. R.: A systematic methodology for constructing hyperchaotic systems with multiple positive Lyapunov exponents and circuit implementation. IEEE Trans. Circuits-I 61 (2014), 854-864. | DOI
[19] Sprott, J. C.: Some simple chaotic flows. Phys. Rev. E 50 (1994), 647-650. | DOI | MR
[20] Sudheer, K. S., Sabir, M.: Adaptive modiffied function projective synchronization between hyperchaotic Lorenz system and hyperchaotic Lu system with uncertain parameters. Phys. Lett. A 373 (2009), 3743-3748. | DOI | MR
[21] Vaněček, A., Čelikovský, S.: Control systems: From Linear Analysis to Synthesis of Chaos. Prentice-Hall, London 1996. | Zbl
[22] Wang, X., Chen, G. R.: A chaotic system with only one stable equilibrium. Commun. Nonlinear Sci. Numer. Simul. 17 (2012). 1264-1272. | DOI | MR
[23] Wang, Z.: Existence of attractor and control of a 3D differential system. Nonlinear Dyn. 60 (2010), 369-373. | DOI | MR | Zbl
[24] Wang, Z., Li, Y. X., Xi, X. J., Lü, L.: Heteoclinic orbit and backstepping control of a 3D chaotic system. Acta Phys. Sin. 60 (2011), 010513.
[25] Wei, Z. C., Wang, Z.: Chaotic behavior and modified function projective synchronization of a simple system with one stable equilibrium. Kybernetika 49 (2013), 359-374. | MR | Zbl
[26] Yang, Q. G., Chen, G. R.: A chaotic system with one saddle and two stable node-foci. Int. J. Bifur. Chaos 18 (2008), 1393-1414. | DOI | MR | Zbl
Cité par Sources :