Optimal, adaptive and single state feedback control for a 3D chaotic system with golden proportion equilibria
Kybernetika, Tome 50 (2014) no. 4, pp. 596-615
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, the problems on purposefully controlling chaos for a three-dimensional quadratic continuous autonomous chaotic system, namely the chaotic Pehlivan-Uyaroglu system are investigated. The chaotic system, has three equilibrium points and more interestingly the equilibrium points have golden proportion values, which can generate single folded attractor. We developed an optimal control design, in order to stabilize the unstable equilibrium points of this system. Furthermore, we propose Lyapunov stability to control the Pehlivan-Uyaroglu system with unknown parameters by way of a feedback control approach and a single controller. Numerical simulations are performed to demonstrate the effectiveness of the proposed control strategies.
In this paper, the problems on purposefully controlling chaos for a three-dimensional quadratic continuous autonomous chaotic system, namely the chaotic Pehlivan-Uyaroglu system are investigated. The chaotic system, has three equilibrium points and more interestingly the equilibrium points have golden proportion values, which can generate single folded attractor. We developed an optimal control design, in order to stabilize the unstable equilibrium points of this system. Furthermore, we propose Lyapunov stability to control the Pehlivan-Uyaroglu system with unknown parameters by way of a feedback control approach and a single controller. Numerical simulations are performed to demonstrate the effectiveness of the proposed control strategies.
DOI : 10.14736/kyb-2014-4-0596
Classification : 34D20, 34H10, 37D45, 37N35, 49M20, 58E25, 93C10
Keywords: autonomous chaotic system; optimal control; adaptive control; single state feedback control; Pontryagin Minimum Principle
@article{10_14736_kyb_2014_4_0596,
     author = {Saberi Nik, Hassan and He, Ping and Talebian, Sayyed Taha},
     title = {Optimal, adaptive and single state feedback control for a {3D} chaotic system with golden proportion equilibria},
     journal = {Kybernetika},
     pages = {596--615},
     year = {2014},
     volume = {50},
     number = {4},
     doi = {10.14736/kyb-2014-4-0596},
     mrnumber = {3275087},
     zbl = {06386429},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-4-0596/}
}
TY  - JOUR
AU  - Saberi Nik, Hassan
AU  - He, Ping
AU  - Talebian, Sayyed Taha
TI  - Optimal, adaptive and single state feedback control for a 3D chaotic system with golden proportion equilibria
JO  - Kybernetika
PY  - 2014
SP  - 596
EP  - 615
VL  - 50
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-4-0596/
DO  - 10.14736/kyb-2014-4-0596
LA  - en
ID  - 10_14736_kyb_2014_4_0596
ER  - 
%0 Journal Article
%A Saberi Nik, Hassan
%A He, Ping
%A Talebian, Sayyed Taha
%T Optimal, adaptive and single state feedback control for a 3D chaotic system with golden proportion equilibria
%J Kybernetika
%D 2014
%P 596-615
%V 50
%N 4
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-4-0596/
%R 10.14736/kyb-2014-4-0596
%G en
%F 10_14736_kyb_2014_4_0596
Saberi Nik, Hassan; He, Ping; Talebian, Sayyed Taha. Optimal, adaptive and single state feedback control for a 3D chaotic system with golden proportion equilibria. Kybernetika, Tome 50 (2014) no. 4, pp. 596-615. doi: 10.14736/kyb-2014-4-0596

[1] Yagasaki, K.: Chaos in a pendulum with feedback control. Nonlinear Dyn. 6 (1994), 125-142. | DOI

[2] Han, S. K., Kerrer, C., Kuramoto, Y.: Dephasing and bursting in coupled neural oscillators. Phys. Rev. Lett. 75 (1995), 3190-3193. | DOI

[3] Cuomo, K. M., Oppenheim, A. V.: Circuit implementation of synchronized chaos with applications to communications. Phys. Rev. Lett. 71 (1993), 65-68. | DOI

[4] Nik, H. Saberi, Gorder, R. A. Van: Competitive modes for the Baier-Sahle hyperchaotic flow in arbitrary dimensions. Nonlinear Dyn. 74 (2013), 3, 581-590. | MR

[5] Ott, E., Grebogi, C., Yorke, J. A.: Controlling chaos. Phys. Rev. Lett. 64 (1990), 1196-1199. | DOI | MR | Zbl

[6] Azhmyakov, V., Basin, M. V., Gil-Garcia, A. E.: Optimal control processes associated with a class of discontinuous control systems: applications to sliding mode dynamics. Kybernetika 50 (2014), 1, 5-18. | MR

[7] Jiang, Y., Dai, J.: Robust control of chaos in modified FitzHugh-Nagumo neuron model under external electrical stimulation based on internal model principle. Kybernetika 47 (2011), 4, 612-629. | MR | Zbl

[8] Wang, H., Han, Z Z., Xie, Q. Y., Zhang, W.: Finite-time chaos control of unified chaotic systems with uncertain parameters. Nonlinear Dyn. 55 (2009), 323-328. | MR | Zbl

[9] Lynnyk, V., Čelikovský, S.: On the anti-synchronization detection for the generalized Lorenz system and its applications to secure encryption. Kybernetika 46 (2010), 1, 1-18. | MR | Zbl

[10] Sun, K., Liu, X., Zhu, C., Sprott, J. C.: Hyperchaos and hyperchaos control of the sinusoidally forced simplified Lorenz system. Nonlinear Dyn. 69 (2012), 1383-1391. | MR

[11] Wei, Z., Wang, Z.: Chaotic behavior and modified function projective synchronization of a simple system with one stable equilibrium. Kybernetika 49 (2013), 2, 359-374. | MR | Zbl

[12] Effati, S., Nik, H. Saberi, Jajarmi, A.: Hyperchaos control of the hyperchaotic Chen system by optimal control design. Nonlinear Dyn. 73 (2013), 499-508. | MR

[13] Effati, S., Saberi-Nadjafi, J., Nik, H. Saberi: Optimal and adaptive control for a kind of 3D chaotic and 4D hyper-chaotic systems. Appl. Math. Modell. 38 (2014), 759-774. | DOI | MR

[14] Nik, H. Saberi, Golchaman, M.: Chaos control of a bounded 4D chaotic system. Neural Comput. Appl. (2013).

[15] Yu, S., Lu, J., Yu, X., Chen, G.: Design and implementation of grid multiwing hyperchaotic Lorenz system family via switching control and constructing super-heteroclinic loops. IEEE Trans. Circuits Syst. 59-I (2012), 5, 1015-1028. | DOI | MR

[16] Lu, J., Yu, S., Leung, H., Chen, G.: Experimental verification of multidirectional multiscroll chaotic attractors. IEEE Trans. Circuits Syst. 53 (2006), 1, 149-165. | DOI

[17] Wang, Z. H., Sun, Y. X., Qi, G. Y., Wyk, B. J.: The effects of fractional order on a 3-D quadratic autonomous system with four-wing attractor. Nonlinear Dyn. 62 (2010), 139-150. | MR | Zbl

[18] Cam, U.: A new high performance realization of mixed-mode chaotic circuit using current-feedback operational amplifiers. Comput. Electr. Engrg. 30 (2004), 4, 281-290. | DOI | Zbl

[19] Yu, S., Lü, J., Tang, W., Chen, G.: A general multiscroll Lorenz system family and its realization via digital signal processors. Chaos 16 (2006), 033126. | DOI | Zbl

[20] Pehlivan, I., Uyaroglu, Y.: Rikitake attractor and its synchronization application for secure communication systems. J. Appl. Sci. 7 (2007), 7, 232-236. | DOI

[21] Pehlivan, I., Uyaroglu, Y.: A new 3D chaotic system with golden proportion equilibria: Analysis and electronic circuit realization. Comput. Electr. Engrg. 38 (2012), 6, 1777-1784. | DOI

[22] Kirk, D. E.: Optimal Control Theory: An Introduction. Prentice-Hall, 1970.

[23] Zhong, W., Stefanovski, J., Dimirovski, G., Zhao, J.: Decentralized control and synchronization of time-varying complex dynamical network. Kybernetika 45 (2009), 151-167. | MR | Zbl

[24] Chen, Y., Lu, J., Lin, Z.: Consensus of discrete-time multi-agent systems with transmission nonlinearity. Automatica 49 (2013), 6, 1768-1775. | DOI | MR

[25] Lu, J., Chen, G.: A time-varying complex dynamical network model and its controlled synchronization criteria. IEEE Trans. Automat. Control 50 (2005), 6, 841-846. | DOI | MR

[26] Zhou, J., Lu, J., Lu, J.: Pinning adaptive synchronization of a general complex dynamical network. Automatica 44 (2008), 4, 996-1003. | DOI | MR | Zbl

[27] He, P., Ma, S. H., Fan, T.: Finite-time mixed outer synchronization of complex networks with coupling time-varying delay. Chaos 22 (2012), 4, 043151. | DOI

[28] He, P., Jing, C. G., Fan, T., Chen, C. Z.: Robust decentralized adaptive synchronization of general complex networks with coupling delayed and uncertainties. Complexity 19 (2014), 10-26. | DOI | MR

[29] He, P., Jing, C. G., Chen, C. Z., Fan, T., Nik, H. Saberi: Synchronization of general complex networks via adaptive control schemes. J. Phys. 82 (2014), 3, 499-514.

Cité par Sources :