On the global dynamics of the cancer AIDS-related mathematical model
Kybernetika, Tome 50 (2014) no. 4, pp. 563-579
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we examine some features of the global dynamics of the four-dimensional system created by Lou, Ruggeri and Ma in 2007 which describes the behavior of the AIDS-related cancer dynamic model in vivo. We give upper and lower ultimate bounds for concentrations of cell populations and the free HIV-1 involved in this model. We show for this dynamics that there is a positively invariant polytope and we find a few surfaces containing omega-limit sets for positive half trajectories in the positive orthant. Finally, we derive the main result of this work: sufficient conditions of ultimate cancer free behavior.
In this paper we examine some features of the global dynamics of the four-dimensional system created by Lou, Ruggeri and Ma in 2007 which describes the behavior of the AIDS-related cancer dynamic model in vivo. We give upper and lower ultimate bounds for concentrations of cell populations and the free HIV-1 involved in this model. We show for this dynamics that there is a positively invariant polytope and we find a few surfaces containing omega-limit sets for positive half trajectories in the positive orthant. Finally, we derive the main result of this work: sufficient conditions of ultimate cancer free behavior.
DOI : 10.14736/kyb-2014-4-0563
Classification : 34C11, 34D23, 92D25, 92D30, 93D20
Keywords: cancer growth model; AIDS; compact invariant set; omega-limit set; localization; ultimate cancer free dynamics
@article{10_14736_kyb_2014_4_0563,
     author = {Starkov, Konstantin E. and Plata-Ante, Corina},
     title = {On the global dynamics of the cancer {AIDS-related} mathematical model},
     journal = {Kybernetika},
     pages = {563--579},
     year = {2014},
     volume = {50},
     number = {4},
     doi = {10.14736/kyb-2014-4-0563},
     mrnumber = {3275085},
     zbl = {06386427},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-4-0563/}
}
TY  - JOUR
AU  - Starkov, Konstantin E.
AU  - Plata-Ante, Corina
TI  - On the global dynamics of the cancer AIDS-related mathematical model
JO  - Kybernetika
PY  - 2014
SP  - 563
EP  - 579
VL  - 50
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-4-0563/
DO  - 10.14736/kyb-2014-4-0563
LA  - en
ID  - 10_14736_kyb_2014_4_0563
ER  - 
%0 Journal Article
%A Starkov, Konstantin E.
%A Plata-Ante, Corina
%T On the global dynamics of the cancer AIDS-related mathematical model
%J Kybernetika
%D 2014
%P 563-579
%V 50
%N 4
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-4-0563/
%R 10.14736/kyb-2014-4-0563
%G en
%F 10_14736_kyb_2014_4_0563
Starkov, Konstantin E.; Plata-Ante, Corina. On the global dynamics of the cancer AIDS-related mathematical model. Kybernetika, Tome 50 (2014) no. 4, pp. 563-579. doi: 10.14736/kyb-2014-4-0563

[1] Boer, R. J. De, Perelson, A. S.: Target cell limited and immune control models of HIV infection: a comparison. J. Theoret. Biol. 190 (1998), 3, 201-214. | DOI

[2] Hraba, T., Doležal, J., Čelikovský, S.: Model-based analysis of CD4+ lymphocyte dynamics in HIV infected individuals. Immunobiology 181 (1990), 108-118. | DOI

[3] Krishchenko, A. P.: Estimation of domains with cycles. Comput. Math. Appl. 34 (1997), 325-332. | DOI | MR

[4] Krishchenko, A. P.: Localization of invariant compact sets of dynamical systems. Differ. Equ. 41 (2005), 1669-1676. | DOI | MR | Zbl

[5] Krishchenko, A. P., Starkov, K. E.: Localization of compact invariant sets of the Lorenz system. Phys. Lett. A 353 (2006), 5, 383-388. | DOI | MR | Zbl

[6] Levy, J. A.: HIV and the Pathogenesis of AIDS. Springer-Verlag, New York 1999.

[7] Lou, J., Ma, Z., Shao, Y., Han, L.: Modelling the interaction of T-cells, antigen presenting cells, and HIV-1 in vivo. Comput. Math. Appl. 48 (2004), 9-33. | DOI | MR | Zbl

[8] Lou, J., Ruggeri, T., Tebaldi, C.: Modelling cancer in HIV-1 infected individuals: Equilibria, cycles and chaotic behavior. Math. Biosci. Eng. 3 (2006), 2, 313-324. | DOI | MR

[9] Lou, J., Ruggeri, T., Ma, Z.: Cycles and chaotic behavior in an AIDS-related cancer dynamic model in vivo. J. Biol. Systems 15 (2007), 02, 149-168. | DOI | Zbl

[10] Perelson, A. S., Kirschner, D. E., DeBoer, R.: Dynamics of HIV infection of CD4+ T cells. Math. Biosci. 114 (1993), 1, 81-125.

[11] Perko, L.: Differential Equations an Dynamical Systems. Second edition. Springer-Verlag, New York, Berlin, Heidelberg 1996. | MR

[12] Starkov, K. E.: Compact invariant sets of the Bianchi VIII and Bianchi IX Hamiltonian systems. Phys. Lett. A 375 (2011), 3184-3187. | DOI | MR | Zbl

[13] Starkov, K. E., Coria, L. N.: Global dynamics of the Kirschner-Panetta model for the tumor immunotherapy. Nonlinear Anal. Real World Appl. 14 (2013), 1425-1433. | MR

[14] Starkov, K. E., Pogromsky, A. Y.: On the global dynamics of the Owen-Sherratt model describing the tumor-macrophage interactions. Int. J. Bifur. Chaos Appl. Sci. Engrg. 23 (2013). | DOI | MR | Zbl

[15] Starkov, K. E., Gamboa, D.: Localization of compact invariant sets and global stability in analysis of one tumor growth model. Math. Methods Appl. Sci. (2013). | DOI

[16] Starkov, K. E., Krishchenko, A. P.: On the global dynamics of one cancer tumour growth model. Commun. Nonlin. Sci. Numer. Simul. 19 (2014), 1486-1495. | DOI | MR

[17] Starkov, K. E., Villegas, A.: On some dynamical properties of one seven- dimensional cancer model with immunotherapy. Int. J. Bifur. Chaos Appl. Sci. Engrg. 24 (2014). | DOI | MR

[18] Valle, P. A., Coria, L. N., Starkov, K. E.: Estudio de la dinamica global para un modelo de evasion-inmune de un tumor cancerigeno. Comp. y Sistemas, accepted.

[19] Wang, L., Li, M. Y.: Mathematical analysis of the global dynamics of a model for HIV infection of CD4+ T cells. Math. Biosci. 200 (2006), 44-57. | DOI | MR | Zbl

[20] Wen, Q., Lou, J.: The global dynamics of a model about HIV-1 infection in vivo. Ric. Mat. 58 (2009), 1, 77-90. | DOI | MR | Zbl

Cité par Sources :