Keywords: rolling; group of isometries; ellipsoid; kinematic equations; interpolation
@article{10_14736_kyb_2014_4_0544,
author = {Krakowski, Krzysztof and Silva Leite, F\'atima},
title = {An algorithm based on rolling to generate smooth interpolating curves on ellipsoids},
journal = {Kybernetika},
pages = {544--562},
year = {2014},
volume = {50},
number = {4},
doi = {10.14736/kyb-2014-4-0544},
mrnumber = {3275084},
zbl = {06386426},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-4-0544/}
}
TY - JOUR AU - Krakowski, Krzysztof AU - Silva Leite, Fátima TI - An algorithm based on rolling to generate smooth interpolating curves on ellipsoids JO - Kybernetika PY - 2014 SP - 544 EP - 562 VL - 50 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-4-0544/ DO - 10.14736/kyb-2014-4-0544 LA - en ID - 10_14736_kyb_2014_4_0544 ER -
%0 Journal Article %A Krakowski, Krzysztof %A Silva Leite, Fátima %T An algorithm based on rolling to generate smooth interpolating curves on ellipsoids %J Kybernetika %D 2014 %P 544-562 %V 50 %N 4 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-4-0544/ %R 10.14736/kyb-2014-4-0544 %G en %F 10_14736_kyb_2014_4_0544
Krakowski, Krzysztof; Silva Leite, Fátima. An algorithm based on rolling to generate smooth interpolating curves on ellipsoids. Kybernetika, Tome 50 (2014) no. 4, pp. 544-562. doi: 10.14736/kyb-2014-4-0544
[1] Agrachev, A., Sachkov, Y.: Control Theory from the Geometric Viewpoint. In: Encyclopaedia of Mathematical Sciences 87 (2004), Springer-Verlag. | MR | Zbl
[2] Camarinha, M.: The Geometry of Cubic Polynomials on Riemannian Manifolds. PhD. Thesis, Departamento de Matemática, Universidade de Coimbra 1996.
[3] Crouch, P., Kun, G., Leite, F. S.: The De Casteljau algorithm on Lie groups and spheres. J. Dyn. Control Syst. 5 (1999), 3, 397-429. | DOI | MR | Zbl
[4] Crouch, P, Leite, F. S.: Geometry and the dynamic interpolation problem. In: Proc. American Control Conference Boston 1991, pp. 1131-1137.
[5] Crouch, P., Leite, F. S.: The dynamic interpolation problem: on Riemannian manifolds, Lie groups and symmetric spaces. J. Dyn. Control Syst. 1 (1995), 2, 177-202. | DOI | MR | Zbl
[6] Fedorov, Y. N., Jovanović, B.: Nonholonomic LR systems as generalized chaplygin systems with an invariant measure and flows on homogeneous spaces. J. Nonlinear Sci. 14 (2004), 4, 341-381. | DOI | MR | Zbl
[7] Giambó, R., Giannoni, F., Piccione, P.: Fitting smooth paths to spherical data. IMA J. Math. Control Inform. 19 (2002), 445-460. | MR
[8] Hüper, K., Kleinsteuber, M., Leite, F. S.: Rolling Stiefel manifolds. Int. J. Systems Sci. 39 (2008), 8, 881-887. | MR | Zbl
[9] Hüper, K., Krakowski, K. A., Leite, F. S.: Rolling Maps in a Riemannian Framework. In: Mathematical Papers in Honour of Fátima Silva Leite, Textos de Matemática 43, Department of Mathematics, University of Coimbra 2011, pp. 15-30. | MR | Zbl
[10] Hüper, K., Leite, F. S.: Smooth interpolating curves with applications to path planning. In: 10th IEEE Mediterranean Conference on Control and Automation (MED 2002), Lisbon 2002.
[11] Hüper, K., Leite, F. S.: On the geometry of rolling and interpolation curves on $S^n$, $SO_n$ and Graßmann manifolds. J. Dyn. Control Syst. 13 (2007), 4, 467-502. | DOI | MR
[12] Jupp, P., Kent, J.: Fitting smooth paths to spherical data. Appl. Statist. 36 (1987), 34-46. | DOI | MR | Zbl
[13] Jurdjevic, V., Zimmerman, J.: Rolling problems on spaces of constant curvature. In: Lagrangian and Hamiltonian methods for nonlinear control 2006, Proc. 3rd IFAC Workshop 2006 (F. Bullo and K. Fujimoto, eds.), Nagoya 2007, Lect. Notes Control Inform. Sciences, Springer, pp. 221-231. | MR | Zbl
[14] Krakowski, K., Leite, F. S.: Smooth interpolation on ellipsoids via rolling motions. In: PhysCon 2013, San Luis Potosí, Mexico 2013.
[15] Krakowski, K. A., Leite, F. S.: Why controllability of rolling may fail: a few illustrative examples. In: Pré-Publicações do Departamento de Matemática, No. 12-26, University of Coimbra 2012, pp. 1-30.
[16] Lee, J. M.: Riemannian Manifolds: An Introduction to Curvature. In? Graduate Texts in Mathematics No. 176, Springer-Verlag, New York 1997. | MR | Zbl
[17] Machado, L., Leite, F. S., Krakowski, K.: Higher-order smoothing splines versus least squares problems on riemannian manifolds. J. Dyn. Control Syst. 16 (2010), 1, 121-148. | DOI | MR | Zbl
[18] Noakes, L., Heinzinger, G., Paden, B.: Cubic splines on curved spaces. IMA J. Math. Control Inform. 6 (1989), 465-473. | DOI | MR | Zbl
[19] Nomizu, K.: Kinematics and differential geometry of submanifolds. Tôhoku Math. J. 30 (1978), 623-637. | DOI | MR | Zbl
[20] Park, F., Ravani, B.: Optimal control of the sphere ${S^n}$ rolling on ${E^n}$. ASME J. Mech. Design 117 (1995), 36-40.
[21] Samir, C., Absil, P.-A., Srivastava, A., Klassen, E.: A gradient-descent method for curve fitting on Riemannian manifolds. Found. Comput. Math. 12 (2012), 49-73. | DOI | MR | Zbl
[22] Sharpe, R. W.: Differential Geometry: Cartan's Generalization of Klein's Erlangen Program. In: Graduate Texts in Mathematics, No. 166. Springer-Verlag, New York 1997. | MR | Zbl
[23] Zimmerman, J.: Optimal control of the sphere ${S^n}$ rolling on ${E^n}$. Math. Control Signals Systems 17 (2005), 1, 14-37. | DOI | MR | Zbl
Cité par Sources :