Keywords: optimal control; Pennes' bioheat equation; semigroup theory; thermal therapy; hyperthermia
@article{10_14736_kyb_2014_4_0530,
author = {Malek, Alaeddin and Abbasi, Ghasem},
title = {Optimal control solution for {Pennes'} equation using strongly continuous semigroup},
journal = {Kybernetika},
pages = {530--543},
year = {2014},
volume = {50},
number = {4},
doi = {10.14736/kyb-2014-4-0530},
mrnumber = {3275083},
zbl = {06386425},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-4-0530/}
}
TY - JOUR AU - Malek, Alaeddin AU - Abbasi, Ghasem TI - Optimal control solution for Pennes' equation using strongly continuous semigroup JO - Kybernetika PY - 2014 SP - 530 EP - 543 VL - 50 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-4-0530/ DO - 10.14736/kyb-2014-4-0530 LA - en ID - 10_14736_kyb_2014_4_0530 ER -
%0 Journal Article %A Malek, Alaeddin %A Abbasi, Ghasem %T Optimal control solution for Pennes' equation using strongly continuous semigroup %J Kybernetika %D 2014 %P 530-543 %V 50 %N 4 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-4-0530/ %R 10.14736/kyb-2014-4-0530 %G en %F 10_14736_kyb_2014_4_0530
Malek, Alaeddin; Abbasi, Ghasem. Optimal control solution for Pennes' equation using strongly continuous semigroup. Kybernetika, Tome 50 (2014) no. 4, pp. 530-543. doi: 10.14736/kyb-2014-4-0530
[1] Aghayan, S. A., Sardari, D., Mahdavi, S. R. M., Zahmatkesh, M. H.: An inverse problem of temperature optimization in hyperthermia by controlling the overall heat transfer coefficient. Hindawi Publishing Corporation J. Appl. Math. 2013 (2013), 1-9. | MR
[2] Curtain, R. F., Zwart, H.: An Introduction to Infinite-Dimensional Linear Systems Theory. Springer-Verlag 21 of Text in Applied Mathematics, 1995. | MR | Zbl
[3] Cheng, K. S., Stakhursky, V., Craciunescu, O. I., Stauffer, P., Dewhirst, M., Das, S. K.: Fast temperature optimization of multi-source hyperthermia applicators with reduced-order modelling of 'virtual sources'. Physics in Medicine and Biology 53 (2008), 6, 1619-1635. | DOI
[4] Deng, Z. S., Liu, J.: Analytical Solutions to 3D Bioheat Transfer Problems with or without Phase Change. In: Heat Transfer Phenomena and Applications (S. N. Kazi, ed.), Chapter 8, InTech, 2012.
[5] Deng, Z. S., Liu, J.: Analytical study on bioheat transfer problems with spatial or transient heating on skin surface or inside biological bodies. J. Biomech. Eng. 124 (2002), 638-649. | DOI
[6] Dhar, R., Dhar, P., Dhar, R.: Problem on optimal distribution of induced microwave by heating probe at tumour site in hyperthermia. Adv. Model. Optim. 13 (2011), 1, 39-48. | MR
[7] Dhar, P., Dhar, R., Dhar, R.: An optimal control problem on temperature distribution in tissue by induced microwave. Adv. Appl. Math. Biosciences 2 (2011), 1, 27-38.
[8] Dhar, P., Dhar, R.: Optimal control for bio-heat equation due to induced microwave. Springer J. Appl. Math. Mech. 31 (2010), 4, 529-534. | DOI | MR | Zbl
[9] Gomberoff, A., Hojman, S. A.: Non-standard construction of Hamiltonian structures. J. Phys. A: Math. Gen. 30 (1997), 14, 5077-5084. | DOI | MR | Zbl
[10] Heidari, H., Malek, A.: Optimal boundary control for hyperdiffusion equation. Kybernetika 46 (2010), 5, 907-925. | MR | Zbl
[11] Heidari, H., Zwart, H., Malek, A.: Controllability and Stability of 3D Heat Conduction Equation in a Submicroscale Thin Film. Department of Applied Mathematics, University of Twente, Enschede 2010, pp. 1-21.
[12] Karaa, S., Zhang, J., Yang, F.: A numerical study of a 3D bioheat transfer problem with different spatial heating. Math. Comput. Simul. 68 (2005), 4, 375-388. | DOI | MR | Zbl
[13] Loulou, T., Scott, E. P.: Thermal dose optimization in hyperthermia treatments by using the conjugate gradient method. Numer. Heat Transfer, Part A 42 (2002), 7, 661-683. | DOI
[14] Malek, A., Bojdi, Z., Golbarg, P.: Solving fully 3D microscale dual phase lag problem using mixed-collocation, finite difference discretization. J. Heat Transfer 134 (2012), 9, 094501-094506. | DOI
[15] Malek, A., Nataj, R. Ebrahim, Yazdanpanah, M. J.: Efficient algorithm to solve optimal boundary control problem for Burgers' equation. Kybernetika 48 (2012), 6, 1250-1265. | MR
[16] Malek, A., Momeni-Masuleh, S. H.: A mixed collocation-finite difference method for 3D microscopic heat transport problems. J. Comput. Appl. Math. 217 (2008), 1, 137-147. | DOI | MR | Zbl
[17] Momeni-Masuleh, S. H., Malek, A.: Hybrid pseudo spectral-finite difference method for solving a 3D heat conduction equation in a submicroscale thin film. Numer. Methods Partial Differential Equations 23 (2007), 5, 1139-1148. | DOI | MR
Cité par Sources :