Realizability of precompensators in linear multivariable systems: A structural approach
Kybernetika, Tome 50 (2014) no. 4, pp. 512-529
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this work, given a linear multivariable system, the problem of static state feedback realization of dynamic compensators is considered. Necessary and sufficient conditions for the existence of a static state feedback that realizes the dynamic compensator (square or full column rank compensator) are stated in structural terms, i. e., in terms of the zero-pole structure of the compensator, and the eigenvalues and the row image of the controllability matrix of the compensated system. Based on these conditions a formula is presented to find the state feedback matrices realizing a given compensator. It is also shown that the static state feedback realizing the compensator is unique if and only if the closed-loop system is controllable.
In this work, given a linear multivariable system, the problem of static state feedback realization of dynamic compensators is considered. Necessary and sufficient conditions for the existence of a static state feedback that realizes the dynamic compensator (square or full column rank compensator) are stated in structural terms, i. e., in terms of the zero-pole structure of the compensator, and the eigenvalues and the row image of the controllability matrix of the compensated system. Based on these conditions a formula is presented to find the state feedback matrices realizing a given compensator. It is also shown that the static state feedback realizing the compensator is unique if and only if the closed-loop system is controllable.
DOI : 10.14736/kyb-2014-4-0512
Classification : 93B52, 93C05
Keywords: linear systems; feedback control; compensator realizability
@article{10_14736_kyb_2014_4_0512,
     author = {Ruiz-Le\'on, Javier and Casta\~neda, Eduardo},
     title = {Realizability of precompensators in linear multivariable systems: {A} structural approach},
     journal = {Kybernetika},
     pages = {512--529},
     year = {2014},
     volume = {50},
     number = {4},
     doi = {10.14736/kyb-2014-4-0512},
     mrnumber = {3275082},
     zbl = {06386424},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-4-0512/}
}
TY  - JOUR
AU  - Ruiz-León, Javier
AU  - Castañeda, Eduardo
TI  - Realizability of precompensators in linear multivariable systems: A structural approach
JO  - Kybernetika
PY  - 2014
SP  - 512
EP  - 529
VL  - 50
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-4-0512/
DO  - 10.14736/kyb-2014-4-0512
LA  - en
ID  - 10_14736_kyb_2014_4_0512
ER  - 
%0 Journal Article
%A Ruiz-León, Javier
%A Castañeda, Eduardo
%T Realizability of precompensators in linear multivariable systems: A structural approach
%J Kybernetika
%D 2014
%P 512-529
%V 50
%N 4
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-4-0512/
%R 10.14736/kyb-2014-4-0512
%G en
%F 10_14736_kyb_2014_4_0512
Ruiz-León, Javier; Castañeda, Eduardo. Realizability of precompensators in linear multivariable systems: A structural approach. Kybernetika, Tome 50 (2014) no. 4, pp. 512-529. doi: 10.14736/kyb-2014-4-0512

[1] Castañeda, E., Ruiz-León, J.: New results on the state feedback realizability of full column rank precompensators. In: 6th International Conf. on Electrical Engineering, Computing Science and Automatic Control, Toluca 2009.

[2] Gantmacher, F. R.: Matrix Theory. Chelsea Publishing Co. 1959. | MR

[3] Hautus, M. L. J., Heymann, M.: Linear feedback: An algebraic approach. SIAM J. Control Optim. 16, (1978), 83-105. | DOI | MR | Zbl

[4] Herrera, A. N.: Static realization of dynamic precompensators. IEEE Trans. on Automatic Control. 37 (1992), 1391-1394. | DOI | MR | Zbl

[5] Herrera, A. N.: On the static realization of dynamic precompensators and some related problems. In: Proc. European Control Conference ECC-91, Grenoble 1991. | MR

[6] Isidori, A., Morse, A. S.: State feedback implementation of cascade compens. Syst. Control Lett. 8 (1986), 63-68. | DOI | MR

[7] Kailath, T.: Linear Systems. Prentice Hall, 1980. | MR | Zbl

[8] Kučera, V.: Exact model matching, polynomial equation approach. Int. J. Syst. Sci. 12 (1981), 1477-1484. | DOI | MR | Zbl

[9] Kučera, V.: Transfer function equivalence of feedback/feedforward compensators. Kybernetika 12 (1998), 610-624. | MR | Zbl

[10] Kučera, V.: Realizing the action of a cascade compensator by state feedback. In: Proc. 11th IFAC World Congress. Tallin 1990, vol. 2, pp. 207-211.

[11] Kučera, V., Herrera, A. N.: Static realization of dynamic precompensators for descriptor systems. System & Control Letters. 16 (1991), 273-276. | DOI | MR | Zbl

[12] Ruiz-León, J., Orozco, J. L., Begovich, O.: Closed-loop structure of decouplable linear multivariable systems. Kybernetika 41 (2005), 33-45. | MR | Zbl

Cité par Sources :