State elimination for nonlinear neutral state-space systems
Kybernetika, Tome 50 (2014) no. 4, pp. 473-490
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The problem of finding an input-output representation of a nonlinear state space system, usually referred to as the state elimination, plays an important role in certain control problems. Though, it has been shown that such a representation, at least locally, always exists for both the systems with and without delays, it might be a neutral input-output differential equation in the former case, even when one starts with a retarded system. In this paper the state elimination is therefore extended further to nonlinear neutral state-space systems, and it is shown that also in such a case an input-output representation, at least locally, always exists. In general, it represents a neutral system again. Computational aspects related to the state elimination problem are discussed as well.
The problem of finding an input-output representation of a nonlinear state space system, usually referred to as the state elimination, plays an important role in certain control problems. Though, it has been shown that such a representation, at least locally, always exists for both the systems with and without delays, it might be a neutral input-output differential equation in the former case, even when one starts with a retarded system. In this paper the state elimination is therefore extended further to nonlinear neutral state-space systems, and it is shown that also in such a case an input-output representation, at least locally, always exists. In general, it represents a neutral system again. Computational aspects related to the state elimination problem are discussed as well.
DOI : 10.14736/kyb-2014-4-0473
Classification : 34K35, 34K40, 93B25, 93C10
Keywords: nonlinear time-delay systems; neutral systems; input-output representation; linear algebraic methods; Gröbner bases
@article{10_14736_kyb_2014_4_0473,
     author = {Hal\'as, Miroslav and Bist\'ak, Pavol},
     title = {State elimination for nonlinear neutral state-space systems},
     journal = {Kybernetika},
     pages = {473--490},
     year = {2014},
     volume = {50},
     number = {4},
     doi = {10.14736/kyb-2014-4-0473},
     mrnumber = {3275080},
     zbl = {06386422},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-4-0473/}
}
TY  - JOUR
AU  - Halás, Miroslav
AU  - Bisták, Pavol
TI  - State elimination for nonlinear neutral state-space systems
JO  - Kybernetika
PY  - 2014
SP  - 473
EP  - 490
VL  - 50
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-4-0473/
DO  - 10.14736/kyb-2014-4-0473
LA  - en
ID  - 10_14736_kyb_2014_4_0473
ER  - 
%0 Journal Article
%A Halás, Miroslav
%A Bisták, Pavol
%T State elimination for nonlinear neutral state-space systems
%J Kybernetika
%D 2014
%P 473-490
%V 50
%N 4
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-4-0473/
%R 10.14736/kyb-2014-4-0473
%G en
%F 10_14736_kyb_2014_4_0473
Halás, Miroslav; Bisták, Pavol. State elimination for nonlinear neutral state-space systems. Kybernetika, Tome 50 (2014) no. 4, pp. 473-490. doi: 10.14736/kyb-2014-4-0473

[1] Anguelova, M., Wennberg, B.: State elimination and identifiability of the delay parameter for nonlinear time-delay systems. Automatica 44 (2008), 1373-1378. | DOI | MR | Zbl

[2] Becker, T., Weispfenning, V.: Gröbner Bases. Springer-Verlag, New York 1993. | MR | Zbl

[3] Buchberger, B., Winkler, F.: Gröbner Bases and Applications. Cambridge University Press, Cambridge 1998. | MR | Zbl

[4] Cohn, P. M.: Free Rings and Their Relations. Academic Press, London 1985. | MR | Zbl

[5] Conte, G., Moog, C. H., Perdon, A. M.: Algebraic Methods for Nonlinear Control Systems. Theory and Applications. Second edition. Communications and Control Engineering. Springer-Verlag, London 2007. | MR

[6] Cox, D., Little, J., O'Shea, D.: Ideals, Varieties, and Algorithms. Springer-Verlag, New York 2007. | MR | Zbl

[7] Diop, S.: Elimination in control theory. Math. Contr. Signals Syst. 4 (1991), 72-86. | DOI | MR | Zbl

[8] Glad, S. T.: Nonlinear regulators and Ritt's remainder algorithm. In: Analysis of Controlled Dynamical Systems (B. Bournard, B. Bride, J. P. Gauthier, and I. Kupka, eds.), Progress in systems and control theory 8, Birkhäuser, Boston 1991, pp. 224-232 | MR | Zbl

[9] Glumineau, A., Moog, C. H., Plestan, F.: New algebro-geometric conditions for the linearization by input-output injection. IEEE Trans. Automat. Control 41 (1996), 598-603. | DOI | MR | Zbl

[10] Halás, M.: An algebraic framework generalizing the concept of transfer functions to nonlinear systems. Automatica 44 (2008), 1181-1190. | DOI | MR | Zbl

[11] Halás, M.: Nonlinear time-delay systems: a polynomial approach using Ore algebras. In: Topics in Time-Delay Systems: Analysis, Algorithms and Control (J. J. Loiseau, W. Michiels, S. Niculescu, and R. Sipahi, eds.), Lecture Notes in Control and Information Sciences, Springer, 2009. | MR

[12] Halás, M.: Computing an input-output representation of a neutral state-space system. In: IFAC Workshop on Time Delay Systems, Grenoble 2013.

[13] Halás, M., Anguelova, M.: When retarded nonlinear time-delay systems admit an input-output representation of neutral type. Automatica 49 (2013) 561-567. | DOI | MR | Zbl

[14] Halás, M., Kotta, Ü.: A transfer function approach to the realisation problem of nonlinear systems. Internat. J. Control 85 (2012), 320-331. | DOI | MR | Zbl

[15] Halás, M., Kotta, Ü., Moog, C. H.: Transfer function approach to the model matching problem of nonlinear systems. In: 17th IFAC World Congress, Seoul 2008.

[16] Halás, M., Moog, C. H.: A polynomial solution to the model matching problem of nonlinear time-delay systems. In: European Control Conference, Budapest 2009.

[17] Huba, M.: Comparing 2DOF PI and predictive disturbance observer based filtered PI control. J. Process Control 23 (2013), 1379-1400. | DOI

[18] Kotta, Ü., Bartosiewicz, Z., Pawluszewicz, E., Wyrwas, M.: Irreducibility, reduction and transfer equivalence of nonlinear input-output equations on homogeneous time scales. Syst. Control Lett. 58 (2009), 646-651. | DOI | MR | Zbl

[19] Kotta, Ü., Kotta, P., Halás, M.: Reduction and transfer equivalence of nonlinear control systems: unification and extension via pseudo-linear algebra. Kybernetika 46 (2010), 831-849. | MR | Zbl

[20] Márquez-Martínez, L. A., Moog, C. H., Velasco-Villa, M.: The structure of nonlinear time-delay systems. Kybernetika 36 (2000), 53-62. | MR | Zbl

[21] Márquez-Martínez, L. A., Moog, C. H., Velasco-Villa, M.: Observability and observers for nonlinear systems with time delays. Kybernetika 38 (2002), 445-456. | MR | Zbl

[22] Ohtsuka, T.: Model structure simplification of nonlinear systems via immersion. IEEE Trans. Automat. Control 50 (2005), 607-618. | DOI | MR

[23] Ore, O.: Linear equations in non-commutative fields. Ann. Math. 32 (1931), 463-477. | DOI | MR | Zbl

[24] Ore, O.: Theory of non-commutative polynomials. Ann. Math. 34(1933), 480-508. | DOI | MR | Zbl

[25] Picard, P., Lafay, J. F., Kučera, V.: Model matching for linear systems with delays and 2D systems. Automatica 34 (1998), 183-191. | DOI | MR | Zbl

[26] Rudolph, J.: Viewing input-output system equivalence from differential algebra. J. Math. Systems Estim. Control 4 (1994), 353-383. | MR | Zbl

[27] Walther, U., Georgiou, T. T., Tannenbaum, A.: On the computation of switching surfaces in optimal control: a Gröbner basis approach. IEEE Trans. Automat. Control 46 (2001), 534-540. | DOI | MR | Zbl

[28] Xia, X., Márquez-Martínez, L. A., Zagalak, P., Moog, C. H.: Analysis of nonlinear time-delay systems using modules over non-commutative rings. Automatica 38 (2002), 1549-1555. | DOI | MR

[29] Zhang, J., Xia, X., Moog, C. H.: Parameter identifiability of nonlinear systems with time-delay. IEEE Trans. Automat. Control 51 (2006), 371-375. | DOI | MR

[30] Zheng, Y., Willems, J., Zhang, C.: A polynomial approach to nonlinear system controllability. IEEE Trans. Automat. Control 46 (2001), 1782-1788. | DOI | MR | Zbl

Cité par Sources :