Sliding subspace design based on linear matrix inequalities
Kybernetika, Tome 50 (2014) no. 3, pp. 436-449
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this work, an alternative for sliding surface design based on linear and bilinear matrix inequalities is proposed. The methodology applies for reduced and integral sliding mode control, both continuous- and discrete-time; it takes advantage of the Finsler's lemma to provide a greater degree of freedom than existing approaches for sliding subspace design. The sliding surfaces thus constructed are systematically found via convex optimization techniques, which are efficiently implemented in commercially available software. Examples are provided to illustrate the effectiveness of the proposed approach.
In this work, an alternative for sliding surface design based on linear and bilinear matrix inequalities is proposed. The methodology applies for reduced and integral sliding mode control, both continuous- and discrete-time; it takes advantage of the Finsler's lemma to provide a greater degree of freedom than existing approaches for sliding subspace design. The sliding surfaces thus constructed are systematically found via convex optimization techniques, which are efficiently implemented in commercially available software. Examples are provided to illustrate the effectiveness of the proposed approach.
DOI : 10.14736/kyb-2014-3-0436
Classification : 51M16, 90C25, 90C90, 93B12, 93B40, 93C05
Keywords: sliding mode control; variable structure; sliding subspace design; linear matrix inequalities
@article{10_14736_kyb_2014_3_0436,
     author = {Tapia, Al\'an and M\'arquez, Raymundo and Bernal, Miguel and Cortez, Joaqu{\'\i}n},
     title = {Sliding subspace design based on linear matrix inequalities},
     journal = {Kybernetika},
     pages = {436--449},
     year = {2014},
     volume = {50},
     number = {3},
     doi = {10.14736/kyb-2014-3-0436},
     mrnumber = {3245539},
     zbl = {1298.93110},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-3-0436/}
}
TY  - JOUR
AU  - Tapia, Alán
AU  - Márquez, Raymundo
AU  - Bernal, Miguel
AU  - Cortez, Joaquín
TI  - Sliding subspace design based on linear matrix inequalities
JO  - Kybernetika
PY  - 2014
SP  - 436
EP  - 449
VL  - 50
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-3-0436/
DO  - 10.14736/kyb-2014-3-0436
LA  - en
ID  - 10_14736_kyb_2014_3_0436
ER  - 
%0 Journal Article
%A Tapia, Alán
%A Márquez, Raymundo
%A Bernal, Miguel
%A Cortez, Joaquín
%T Sliding subspace design based on linear matrix inequalities
%J Kybernetika
%D 2014
%P 436-449
%V 50
%N 3
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-3-0436/
%R 10.14736/kyb-2014-3-0436
%G en
%F 10_14736_kyb_2014_3_0436
Tapia, Alán; Márquez, Raymundo; Bernal, Miguel; Cortez, Joaquín. Sliding subspace design based on linear matrix inequalities. Kybernetika, Tome 50 (2014) no. 3, pp. 436-449. doi: 10.14736/kyb-2014-3-0436

[1] Abidi, K., Xu, J.-X., Xinghuo, Y.: On the discrete-time integral sliding-mode control. IEEE Trans. Automat. Control 52 (2007), 4, 709-715. | DOI | MR

[2] Ackermann, J., Utkin, V.: Sliding mode control design based on Ackermann's formula. IEEE Trans. Automat. Control 43 (1998), 2, 234-237. | DOI | MR | Zbl

[3] Arezelier, D., Angulo, M., Bernussou, J.: Sliding surface design by quadratic stabilization and pole placement. In: Proc. 4th European Control Conference, 1997.

[4] Boyd, S., Ghaoui, L. El, Féron, E., Balakrishnan, V.: Linear matrix inequalities in system and control theory. Stud. Appl. Math. 15 (1994). | MR | Zbl

[5] Castaños, F., Fridman, L.: Analysis and design of integral sliding manifolds for systems with unmatched perturbations. IEEE Trans. Automat. Control 51 (2006), 5, 853-858. | DOI | MR

[6] Chang, J.-L.: Discrete sliding mode control of MIMO linear systems. Asian J. Control 4 (2002), 2, 217-222. | DOI

[7] Chen, Y.-P., Chang, J.-L.: A new method for constructing sliding surfaces of linear time-invariant systems. Internat. J. System Sci. 31 (2000), 4, 417-420. | DOI | Zbl

[8] Choi, H.: On the existence of linear sliding surface for a class of uncertain dynamic systems with mismatched uncertainties. Automatica 37 (1999), 1707-1715. | DOI | MR

[9] Choi, H.: LMI-Based Sliding Surface Design for Integral Sliding Mode Control of Mismatched Uncertain Systems. IEEE Trans. Automat. Control 52 (2007), 4, 736-742. | DOI | MR

[10] Cruz-Zavala, E., Moreno, J., Fridman, L.: Uniform sliding mode controllers and uniform sliding surfaces. IMA J. Math. Control Inform. 29 (2012), 4, 491-505. | DOI | MR | Zbl

[11] Oliveira, M. C. De, Skelton, R. E.: Stability Tests for Constrained Linear Systems. In Perspectives in Robust Control. Springer, Berlin 1994.

[12] Dorling, C. M., Zinober, A. S. I.: Two approaches to hyperplane desing in multivariable variable structure control systems. Internat. J. Control 44 (1986), 1, 65-82. | DOI

[13] Dorling, C. M., Zinober, A. S. I.: Robust hyperplane desing in multivariable variable structure control systems. Internat. J. Control 48 (1988), 5, 2043-2054. | DOI | MR

[14] Draženović, B., Milosavljević, C., Veselić, B., Gligić, V.: Comprehensive approach to sliding subspace design in linear time invariant systems. In: IEEE International Workshop on Variable Structure Systems 2012, pp. 473-478.

[15] Edwards, C.: Sliding Mode Control: Theory and Applications. Taylor and Francis, London 1998.

[16] Edwards, C.: A practical method for the design of sliding mode controllers using linear matrix inequalities. Automatica 40 (2004), 10, 1761-1769. | DOI | MR | Zbl

[17] Fridman, L., Moreno, J., Iriarte, R.: Sliding Modes After the First Decade of the 21st Century. Springer, Berlin 2011. | MR

[18] Hermann, C., Spurgeon, S. K., Edwards, C.: A robust sliding mode output tracking control for a class of relative degree zero and non-minimum phase plants: A chemical process application. Internat. J. Control 72 (2001), 1194-1209. | DOI | MR

[19] Huang, J. Y., Yeung, K. S.: Arbitrary eigenvalue assignment via switching hyperplanes design scheme and extension of Ackermann's formula. In: IEEE Conference on Computer, Communication, Control and Power Engineering 4 (1993), 17-20.

[20] Hung, Y. S., Macfarlan, A. G. J.: Multivariable Feedback: A Quasi-Classical Approach. Volume 40. Springer-Verlag, Berlin 1982. | MR

[21] Kautsky, J., Nichols, N. K., Dooren, P. Van: Robust pole assignment in linear state feedbacks. Internat. J. Control 41 (1985), 2, 1129-1155. | DOI | MR

[22] Kočvara, M., Sting, M.: Penbmi, version 2.1. www.penopt.com, 2008.

[23] Mehta, A. J., Bandyopadhyay, B., Inoue, A.: Reduced-order observer design for servo system using duality to discrete-time sliding-surface design. IEEE Trans. Industr. Electronics 57 (2010), 11, 3793-3800. | DOI

[24] Pan, Y., Kumar, K. D., Liu, G.: Reduced-order design of high-order sliding mode control system. Internat. J. Robust and Nonlinear Control 21 (2011), 18, 2064-2078. | DOI | MR | Zbl

[25] Tanaka, K., Wang, H. O.: Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach. John Wiley and Sons, New York 2001.

[26] Utkin, U.: Sliding Modes in Control and Optimization. Springer, Berlin 1992. | MR | Zbl

[27] Utkin, V., Shi, J.: Integral sliding mode in systems operating under uncertainty conditions. In: Conference on Decision and Control 1996.

Cité par Sources :