Keywords: sliding mode control; variable structure; sliding subspace design; linear matrix inequalities
@article{10_14736_kyb_2014_3_0436,
author = {Tapia, Al\'an and M\'arquez, Raymundo and Bernal, Miguel and Cortez, Joaqu{\'\i}n},
title = {Sliding subspace design based on linear matrix inequalities},
journal = {Kybernetika},
pages = {436--449},
year = {2014},
volume = {50},
number = {3},
doi = {10.14736/kyb-2014-3-0436},
mrnumber = {3245539},
zbl = {1298.93110},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-3-0436/}
}
TY - JOUR AU - Tapia, Alán AU - Márquez, Raymundo AU - Bernal, Miguel AU - Cortez, Joaquín TI - Sliding subspace design based on linear matrix inequalities JO - Kybernetika PY - 2014 SP - 436 EP - 449 VL - 50 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-3-0436/ DO - 10.14736/kyb-2014-3-0436 LA - en ID - 10_14736_kyb_2014_3_0436 ER -
%0 Journal Article %A Tapia, Alán %A Márquez, Raymundo %A Bernal, Miguel %A Cortez, Joaquín %T Sliding subspace design based on linear matrix inequalities %J Kybernetika %D 2014 %P 436-449 %V 50 %N 3 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-3-0436/ %R 10.14736/kyb-2014-3-0436 %G en %F 10_14736_kyb_2014_3_0436
Tapia, Alán; Márquez, Raymundo; Bernal, Miguel; Cortez, Joaquín. Sliding subspace design based on linear matrix inequalities. Kybernetika, Tome 50 (2014) no. 3, pp. 436-449. doi: 10.14736/kyb-2014-3-0436
[1] Abidi, K., Xu, J.-X., Xinghuo, Y.: On the discrete-time integral sliding-mode control. IEEE Trans. Automat. Control 52 (2007), 4, 709-715. | DOI | MR
[2] Ackermann, J., Utkin, V.: Sliding mode control design based on Ackermann's formula. IEEE Trans. Automat. Control 43 (1998), 2, 234-237. | DOI | MR | Zbl
[3] Arezelier, D., Angulo, M., Bernussou, J.: Sliding surface design by quadratic stabilization and pole placement. In: Proc. 4th European Control Conference, 1997.
[4] Boyd, S., Ghaoui, L. El, Féron, E., Balakrishnan, V.: Linear matrix inequalities in system and control theory. Stud. Appl. Math. 15 (1994). | MR | Zbl
[5] Castaños, F., Fridman, L.: Analysis and design of integral sliding manifolds for systems with unmatched perturbations. IEEE Trans. Automat. Control 51 (2006), 5, 853-858. | DOI | MR
[6] Chang, J.-L.: Discrete sliding mode control of MIMO linear systems. Asian J. Control 4 (2002), 2, 217-222. | DOI
[7] Chen, Y.-P., Chang, J.-L.: A new method for constructing sliding surfaces of linear time-invariant systems. Internat. J. System Sci. 31 (2000), 4, 417-420. | DOI | Zbl
[8] Choi, H.: On the existence of linear sliding surface for a class of uncertain dynamic systems with mismatched uncertainties. Automatica 37 (1999), 1707-1715. | DOI | MR
[9] Choi, H.: LMI-Based Sliding Surface Design for Integral Sliding Mode Control of Mismatched Uncertain Systems. IEEE Trans. Automat. Control 52 (2007), 4, 736-742. | DOI | MR
[10] Cruz-Zavala, E., Moreno, J., Fridman, L.: Uniform sliding mode controllers and uniform sliding surfaces. IMA J. Math. Control Inform. 29 (2012), 4, 491-505. | DOI | MR | Zbl
[11] Oliveira, M. C. De, Skelton, R. E.: Stability Tests for Constrained Linear Systems. In Perspectives in Robust Control. Springer, Berlin 1994.
[12] Dorling, C. M., Zinober, A. S. I.: Two approaches to hyperplane desing in multivariable variable structure control systems. Internat. J. Control 44 (1986), 1, 65-82. | DOI
[13] Dorling, C. M., Zinober, A. S. I.: Robust hyperplane desing in multivariable variable structure control systems. Internat. J. Control 48 (1988), 5, 2043-2054. | DOI | MR
[14] Draženović, B., Milosavljević, C., Veselić, B., Gligić, V.: Comprehensive approach to sliding subspace design in linear time invariant systems. In: IEEE International Workshop on Variable Structure Systems 2012, pp. 473-478.
[15] Edwards, C.: Sliding Mode Control: Theory and Applications. Taylor and Francis, London 1998.
[16] Edwards, C.: A practical method for the design of sliding mode controllers using linear matrix inequalities. Automatica 40 (2004), 10, 1761-1769. | DOI | MR | Zbl
[17] Fridman, L., Moreno, J., Iriarte, R.: Sliding Modes After the First Decade of the 21st Century. Springer, Berlin 2011. | MR
[18] Hermann, C., Spurgeon, S. K., Edwards, C.: A robust sliding mode output tracking control for a class of relative degree zero and non-minimum phase plants: A chemical process application. Internat. J. Control 72 (2001), 1194-1209. | DOI | MR
[19] Huang, J. Y., Yeung, K. S.: Arbitrary eigenvalue assignment via switching hyperplanes design scheme and extension of Ackermann's formula. In: IEEE Conference on Computer, Communication, Control and Power Engineering 4 (1993), 17-20.
[20] Hung, Y. S., Macfarlan, A. G. J.: Multivariable Feedback: A Quasi-Classical Approach. Volume 40. Springer-Verlag, Berlin 1982. | MR
[21] Kautsky, J., Nichols, N. K., Dooren, P. Van: Robust pole assignment in linear state feedbacks. Internat. J. Control 41 (1985), 2, 1129-1155. | DOI | MR
[22] Kočvara, M., Sting, M.: Penbmi, version 2.1. www.penopt.com, 2008.
[23] Mehta, A. J., Bandyopadhyay, B., Inoue, A.: Reduced-order observer design for servo system using duality to discrete-time sliding-surface design. IEEE Trans. Industr. Electronics 57 (2010), 11, 3793-3800. | DOI
[24] Pan, Y., Kumar, K. D., Liu, G.: Reduced-order design of high-order sliding mode control system. Internat. J. Robust and Nonlinear Control 21 (2011), 18, 2064-2078. | DOI | MR | Zbl
[25] Tanaka, K., Wang, H. O.: Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach. John Wiley and Sons, New York 2001.
[26] Utkin, U.: Sliding Modes in Control and Optimization. Springer, Berlin 1992. | MR | Zbl
[27] Utkin, V., Shi, J.: Integral sliding mode in systems operating under uncertainty conditions. In: Conference on Decision and Control 1996.
Cité par Sources :