Admissible invariant estimators in a linear model
Kybernetika, Tome 50 (2014) no. 3, pp. 310-321
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $\mathbf{y}$ be observation vector in the usual linear model with expectation $\mathbf{A\beta }$ and covariance matrix known up to a multiplicative scalar, possibly singular. A linear statistic $\mathbf{a}^{T} \mathbf{y}$ is called invariant estimator for a parametric function $\phi = \mathbf{c}^{T}\mathbf{\beta }$ if its MSE depends on $\mathbf{\beta }$ only through $\phi $. It is shown that $ \mathbf{a}^{T}\mathbf{y}$ is admissible invariant for $\phi $, if and only if, it is a BLUE of $\phi ,$ in the case when $\phi $ is estimable with zero variance, and it is of the form $k\widehat{\phi }$, where $k\in \left\langle 0,1\right\rangle $ and $ \widehat{\phi }$ is an arbitrary BLUE, otherwise. This result is used in the one- and two-way ANOVA models. Our paper is self-contained and accessible, also for non-specialists.
Let $\mathbf{y}$ be observation vector in the usual linear model with expectation $\mathbf{A\beta }$ and covariance matrix known up to a multiplicative scalar, possibly singular. A linear statistic $\mathbf{a}^{T} \mathbf{y}$ is called invariant estimator for a parametric function $\phi = \mathbf{c}^{T}\mathbf{\beta }$ if its MSE depends on $\mathbf{\beta }$ only through $\phi $. It is shown that $ \mathbf{a}^{T}\mathbf{y}$ is admissible invariant for $\phi $, if and only if, it is a BLUE of $\phi ,$ in the case when $\phi $ is estimable with zero variance, and it is of the form $k\widehat{\phi }$, where $k\in \left\langle 0,1\right\rangle $ and $ \widehat{\phi }$ is an arbitrary BLUE, otherwise. This result is used in the one- and two-way ANOVA models. Our paper is self-contained and accessible, also for non-specialists.
DOI : 10.14736/kyb-2014-3-0310
Classification : 62C05, 62C15, 62J05, 62J10
Keywords: linear estimator; invariant estimator; admissibility; one-way/two-way ANOVA
@article{10_14736_kyb_2014_3_0310,
     author = {St\k{e}pniak, Czes{\l}aw},
     title = {Admissible invariant estimators in a linear model},
     journal = {Kybernetika},
     pages = {310--321},
     year = {2014},
     volume = {50},
     number = {3},
     doi = {10.14736/kyb-2014-3-0310},
     mrnumber = {3245533},
     zbl = {1297.62157},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-3-0310/}
}
TY  - JOUR
AU  - Stępniak, Czesław
TI  - Admissible invariant estimators in a linear model
JO  - Kybernetika
PY  - 2014
SP  - 310
EP  - 321
VL  - 50
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-3-0310/
DO  - 10.14736/kyb-2014-3-0310
LA  - en
ID  - 10_14736_kyb_2014_3_0310
ER  - 
%0 Journal Article
%A Stępniak, Czesław
%T Admissible invariant estimators in a linear model
%J Kybernetika
%D 2014
%P 310-321
%V 50
%N 3
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-3-0310/
%R 10.14736/kyb-2014-3-0310
%G en
%F 10_14736_kyb_2014_3_0310
Stępniak, Czesław. Admissible invariant estimators in a linear model. Kybernetika, Tome 50 (2014) no. 3, pp. 310-321. doi: 10.14736/kyb-2014-3-0310

[1] Baksalary, J. K., Markiewicz, A.: Admissible linear estimators in the general Gauss-Markov model. J. Statist. Plann. Inference 19 (1988), 349-359. | DOI | MR | Zbl

[2] Baksalary, J. K., Markiewicz, A.: A matrix inequality and admissibility of linear estimators with respect to the mean squared error criterion. Linear Algebra Appl. 112 (1989), 9-18. | MR

[3] Baksalary, J. K., Markiewicz, A.: Admissible linear estimators of an arbitrary vector parametric function in the general Gauss-Markov model. J. Statist. Plann. Inference 26 (1990), 161-173. | DOI | MR

[4] Cohen, A.: Estimates of linear combinations of the parameters of the mean vector of a multivariate distribution. Ann. Math. Statist. 36 (1965), 78-87. | DOI | MR

[5] Cohen, A.: All admissible estimates of the mean vector. Ann. Math. Statist. 37 (1966), 458-463. | DOI | MR

[6] Groß, J.: More on concavity of a matrix function. SIAM J. Matrix Anal. Appl. 19 (1998), 365-368. | DOI | MR | Zbl

[7] Groß, J.: Löwner partial ordering and space preordering of Hermitian non-negative definite matrices. Linear Algebra Appl. 326 (2001), 215-223. | MR | Zbl

[8] Groß, J., Markiewicz, A.: Characterization of admissible linear estimators in the linear model. Linear Algebra Appl. 388 (2004), 239-248. | MR

[9] Halmos, P. R.: Finite-Dimensional Vector Spaces. Second edition. Springer-Verlag, New York 1993. | MR

[10] Ip, W., Wong, H., Liu, J.: Sufficient and admissible estimators in general multivariate linear model. J. Statist. Plann. Inference 135 (2005), 371-383. | DOI | MR | Zbl

[11] Klonecki, W.: Linear estimators of mean vector in linear models: Problem of admissibility. Probab. Math. Statist. 2 (1982), 167-178. | MR

[12] Klonecki, W., Zontek, S.: On the structure of admissible linear estimators. J. Multivariate Anal. 24 (1988), 11-30. | DOI | MR | Zbl

[13] Kruskal, W.: When are Gauss-Markov and least squares estimators identical? A coordinate-free approach. Ann. Math. Statist. 39 (1968), 70-75. | DOI | MR | Zbl

[14] LaMotte, L. R.: Admissibility in linear models. Ann. Statist. 10 (1982), 245-255. | DOI | MR

[15] LaMotte, L. R.: On limits of uniquely best linear estimators. Metrika 45 (1997), 197-211. | DOI | MR

[16] Lehmann, E. L., Scheffé, H.: Completeness, similar regions, and unbiased estimation - Part 1. Sankhyā A, 10 (1950), 305-340. | MR

[17] Olsen, A., Seely, J., Birkes, D.: Invariant quadratic unbiased estimation for two variance components. Ann. Statist. 4 (1976), 823-1051. | DOI | MR | Zbl

[18] Rao, C. R.: Linear Statistical Inference. Wiley, New York 1973. | MR | Zbl

[19] Rao, C. R.: Estimation of parameters in a linear model. Ann. Statist. 4 (1976), 1023-1037. Correction Ann. Statist. 7 (1979), 696-696. | DOI | MR | Zbl

[20] Scheffé, H.: The Analysis of Variance. Wiley, New York 1959. | MR | Zbl

[21] Stępniak, C.: On admissible estimators in a linear model. Biom. J. 26 (1984), 815-816. | DOI | MR | Zbl

[22] Stępniak, C.: Ordering of nonnegative definite matrices with application to comparison of linear models. Linear Algebra Appl. 70 (1985), 67-71. | DOI | MR | Zbl

[23] Stępniak, C.: A complete class for linear estimation in a general linear model. Ann. Inst. Statist. Math. A 39 (1987), 563-573. | DOI | MR | Zbl

[24] Stępniak, C.: Admissible linear estimators in mixed linear models. J. Multivariate Anal. 31 (1989), 90-106. | DOI | MR | Zbl

[25] Stępniak, C.: Perfect linear models and perfect parametric functions. J. Statist. Plann. Inference 139 (2009), 151-163. | DOI | MR | Zbl

[26] Stępniak, C.: From equivalent linear equations to Gauss-Markov theorem. J. Inequal. Appl. (2010), ID 259672, 5 pages. | MR | Zbl

[27] Stępniak, C.: On a problem with singularity in comparison of linear experiments. J. Statist. Plann. Inference 141 (2011), 2489-2493. | DOI | MR | Zbl

[28] Synówka-Bejenka, E., Zontek, S.: A characterization of admissible linear estimators of fixed and random effects in linear models. Metrika 68 (2008), 157-172. | DOI | MR

[29] Zontek, S.: Admissibility of limits of the unique locally best estimators with application to variance components models. Probab. Math. Statist. 9 (1988), 29-44. | MR

[30] Zyskind, G.: On canonical forms, non-negative covariance matrices and best and simple least squares estimators in linear models. Ann. Math. Statist. 38 (1967), 1092-1109. | DOI | MR

Cité par Sources :