Discriminating between causal structures in Bayesian Networks given partial observations
Kybernetika, Tome 50 (2014) no. 2, pp. 284-295
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Given a fixed dependency graph $G$ that describes a Bayesian network of binary variables $X_1, \dots, X_n$, our main result is a tight bound on the mutual information $I_c(Y_1, \dots, Y_k) = \sum_{j=1}^k H(Y_j)/c - H(Y_1, \dots, Y_k)$ of an observed subset $Y_1, \dots, Y_k$ of the variables $X_1, \dots, X_n$. Our bound depends on certain quantities that can be computed from the connective structure of the nodes in $G$. Thus it allows to discriminate between different dependency graphs for a probability distribution, as we show from numerical experiments.
Given a fixed dependency graph $G$ that describes a Bayesian network of binary variables $X_1, \dots, X_n$, our main result is a tight bound on the mutual information $I_c(Y_1, \dots, Y_k) = \sum_{j=1}^k H(Y_j)/c - H(Y_1, \dots, Y_k)$ of an observed subset $Y_1, \dots, Y_k$ of the variables $X_1, \dots, X_n$. Our bound depends on certain quantities that can be computed from the connective structure of the nodes in $G$. Thus it allows to discriminate between different dependency graphs for a probability distribution, as we show from numerical experiments.
DOI : 10.14736/kyb-2014-2-0284
Classification : 60A08, 62-09, 62B09, 62H99
Keywords: Bayesian networks; causal Markov condition; information theory; information inequalities; common ancestors; causal inference
@article{10_14736_kyb_2014_2_0284,
     author = {Moritz, Philipp and Reichardt, J\"org and Ay, Nihat},
     title = {Discriminating between causal structures in {Bayesian} {Networks} given partial observations},
     journal = {Kybernetika},
     pages = {284--295},
     year = {2014},
     volume = {50},
     number = {2},
     doi = {10.14736/kyb-2014-2-0284},
     mrnumber = {3216995},
     zbl = {06325225},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-2-0284/}
}
TY  - JOUR
AU  - Moritz, Philipp
AU  - Reichardt, Jörg
AU  - Ay, Nihat
TI  - Discriminating between causal structures in Bayesian Networks given partial observations
JO  - Kybernetika
PY  - 2014
SP  - 284
EP  - 295
VL  - 50
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-2-0284/
DO  - 10.14736/kyb-2014-2-0284
LA  - en
ID  - 10_14736_kyb_2014_2_0284
ER  - 
%0 Journal Article
%A Moritz, Philipp
%A Reichardt, Jörg
%A Ay, Nihat
%T Discriminating between causal structures in Bayesian Networks given partial observations
%J Kybernetika
%D 2014
%P 284-295
%V 50
%N 2
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-2-0284/
%R 10.14736/kyb-2014-2-0284
%G en
%F 10_14736_kyb_2014_2_0284
Moritz, Philipp; Reichardt, Jörg; Ay, Nihat. Discriminating between causal structures in Bayesian Networks given partial observations. Kybernetika, Tome 50 (2014) no. 2, pp. 284-295. doi: 10.14736/kyb-2014-2-0284

[1] Allman, E. S., Rhodes, J. A.: Reconstructing Evolution: New Mathematical and Computational Advances, chapter Phylogenetic invariants. Oxford University Press, 2007. | MR

[2] Ay, N.: A refinement of the common cause principle. Discrete Appl. Math. 157 (2009), 10, 2439-2457. | DOI | MR

[3] Bollobás, B.: Random Graphs. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2001. | MR | Zbl

[4] Cover, T. M., Thomas, J. A.: Elements of Information Theory. Second edition. Wiley, 2006. | MR

[5] Friedman, N.: Inferring cellular networks using probabilistic graphical models. Science 303 (2004), 5659, 799-805. | DOI

[6] Peters, J., Mooij, J., Janzing, D., Schölkopf, B.: Causal discovery with continuous additive noise models. arXiv 1309.6779 (2013).

[7] Lauritzen, S. L.: Graphical Models. Oxford Science Publications, Clarendon Press, 1996. | MR

[8] Lauritzen, S. L., Sheehan, N. A.: Graphical models for genetic analyses. Statist. Sci. 18 (2003), 489-514. | DOI | MR | Zbl

[9] Pearl, J.: Causality: Models, Reasoning and Inference. Cambridge University Press, 2000. | MR | Zbl

[10] Reichenbach, H., Reichenbach, M.: The Direction of Time. California Library Reprint Series, University of California Press, 1956.

[11] Socolar, J. E. S., Kauffman, S. A.: Scaling in ordered and critical random boolean networks. Phys. Rev. Lett. 90 (2003), 068702. | DOI

[12] Steudel, B., Ay, N.: Information-theoretic inference of common ancestors. CoRR, abs/1010.5720, 2010.

[13] Studený, M.: Probabilistic Conditional Independence Structures. Information Science and Statistics. Springer, 2005. | Zbl

Cité par Sources :