Keywords: Bayesian networks; causal Markov condition; information theory; information inequalities; common ancestors; causal inference
@article{10_14736_kyb_2014_2_0284,
author = {Moritz, Philipp and Reichardt, J\"org and Ay, Nihat},
title = {Discriminating between causal structures in {Bayesian} {Networks} given partial observations},
journal = {Kybernetika},
pages = {284--295},
year = {2014},
volume = {50},
number = {2},
doi = {10.14736/kyb-2014-2-0284},
mrnumber = {3216995},
zbl = {06325225},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-2-0284/}
}
TY - JOUR AU - Moritz, Philipp AU - Reichardt, Jörg AU - Ay, Nihat TI - Discriminating between causal structures in Bayesian Networks given partial observations JO - Kybernetika PY - 2014 SP - 284 EP - 295 VL - 50 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-2-0284/ DO - 10.14736/kyb-2014-2-0284 LA - en ID - 10_14736_kyb_2014_2_0284 ER -
%0 Journal Article %A Moritz, Philipp %A Reichardt, Jörg %A Ay, Nihat %T Discriminating between causal structures in Bayesian Networks given partial observations %J Kybernetika %D 2014 %P 284-295 %V 50 %N 2 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-2-0284/ %R 10.14736/kyb-2014-2-0284 %G en %F 10_14736_kyb_2014_2_0284
Moritz, Philipp; Reichardt, Jörg; Ay, Nihat. Discriminating between causal structures in Bayesian Networks given partial observations. Kybernetika, Tome 50 (2014) no. 2, pp. 284-295. doi: 10.14736/kyb-2014-2-0284
[1] Allman, E. S., Rhodes, J. A.: Reconstructing Evolution: New Mathematical and Computational Advances, chapter Phylogenetic invariants. Oxford University Press, 2007. | MR
[2] Ay, N.: A refinement of the common cause principle. Discrete Appl. Math. 157 (2009), 10, 2439-2457. | DOI | MR
[3] Bollobás, B.: Random Graphs. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2001. | MR | Zbl
[4] Cover, T. M., Thomas, J. A.: Elements of Information Theory. Second edition. Wiley, 2006. | MR
[5] Friedman, N.: Inferring cellular networks using probabilistic graphical models. Science 303 (2004), 5659, 799-805. | DOI
[6] Peters, J., Mooij, J., Janzing, D., Schölkopf, B.: Causal discovery with continuous additive noise models. arXiv 1309.6779 (2013).
[7] Lauritzen, S. L.: Graphical Models. Oxford Science Publications, Clarendon Press, 1996. | MR
[8] Lauritzen, S. L., Sheehan, N. A.: Graphical models for genetic analyses. Statist. Sci. 18 (2003), 489-514. | DOI | MR | Zbl
[9] Pearl, J.: Causality: Models, Reasoning and Inference. Cambridge University Press, 2000. | MR | Zbl
[10] Reichenbach, H., Reichenbach, M.: The Direction of Time. California Library Reprint Series, University of California Press, 1956.
[11] Socolar, J. E. S., Kauffman, S. A.: Scaling in ordered and critical random boolean networks. Phys. Rev. Lett. 90 (2003), 068702. | DOI
[12] Steudel, B., Ay, N.: Information-theoretic inference of common ancestors. CoRR, abs/1010.5720, 2010.
[13] Studený, M.: Probabilistic Conditional Independence Structures. Information Science and Statistics. Springer, 2005. | Zbl
Cité par Sources :