Keywords: probability logic; generalized inference forms; degradation; total evidence; coherence; probabilistic Modus Tollens
@article{10_14736_kyb_2014_2_0268,
author = {Wallmann, Christian and Kleiter, Gernot D.},
title = {Degradation in probability logic: {When} more information leads to less precise conclusions},
journal = {Kybernetika},
pages = {268--283},
year = {2014},
volume = {50},
number = {2},
doi = {10.14736/kyb-2014-2-0268},
mrnumber = {3216994},
zbl = {1296.03018},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-2-0268/}
}
TY - JOUR AU - Wallmann, Christian AU - Kleiter, Gernot D. TI - Degradation in probability logic: When more information leads to less precise conclusions JO - Kybernetika PY - 2014 SP - 268 EP - 283 VL - 50 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-2-0268/ DO - 10.14736/kyb-2014-2-0268 LA - en ID - 10_14736_kyb_2014_2_0268 ER -
%0 Journal Article %A Wallmann, Christian %A Kleiter, Gernot D. %T Degradation in probability logic: When more information leads to less precise conclusions %J Kybernetika %D 2014 %P 268-283 %V 50 %N 2 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-2-0268/ %R 10.14736/kyb-2014-2-0268 %G en %F 10_14736_kyb_2014_2_0268
Wallmann, Christian; Kleiter, Gernot D. Degradation in probability logic: When more information leads to less precise conclusions. Kybernetika, Tome 50 (2014) no. 2, pp. 268-283. doi: 10.14736/kyb-2014-2-0268
[1] Coletti, G., Scozzafava, R.: Probabilistic Logic in a Coherent Setting. Kluwer, Dordrecht 2002. | MR | Zbl
[2] Finetti, B. De: Theory of Probability. A Critical Introductory Treatment. Volume 1. Wiley, New York 1974. | MR | Zbl
[3] Fréchet, M.: Généralisations du théorème des probabilités totales. Fund. Math. 255 (1935), 379-387. | Zbl
[4] Gilio, A.: Generalization of inference rules in coherence-based probabilistic default reasoning. Internat. J. Approx. Reason. 53 (2012), 413-434. | DOI | MR
[5] Gilio, A., Sanfilippo, G.: Conditional random quantities and iterated conditioning in the setting of coherence. In: Symbolic and Quantitative Approaches to Reasoning with Uncertainty (L. van der Gaag, ed.), Lecture Notes in Comput. Sci. 7958, Springer (2013), pp. 218-229. | MR
[6] Good, I. J.: On the principle of total evidence. British J. Philos. Sci. 17 (1967), 319-321. | DOI
[7] Kleiter, G. D.: Ockham's razor in probability logic. In: Synergies of Soft Computing and Statistics for Intelligent Data Analysis (R. Kruse, M. R. Berthold, C. Moewes, M. A. Gil, P. Grzegorzewski and O. Hryniewicz, eds.). Adv. in Intelligent Systems and Computation 190, Springer (2012), pp. 409-417.
[8] Kyburg, H. E., Teng, C. M.: Uncertain Inference. Cambridge University Press, Cambridge 2001. | MR | Zbl
[9] Lad, F.: Operational Subjective Statistical Methods. Wiley, New York 1996. | MR | Zbl
[10] Manktelow, K. I., Over, D. E., Elqayam, S.: The Science of Reasoning. A Festschrift for Jonathan St B.T. Evans. Psychology Press, New York 2011.
[11] Wagner, C. G.: Modus tollens probabilized. British J. Philos. Sci. 55 (2004), 4, 747-753. | DOI | MR | Zbl
[12] Wallmann, C., Kleiter, G. D.: Exchangeability in probability logic. In: IPMU 2012, Part IV (S. Greco et al., eds.), CCIS 300 (2012), pp. 157-167. | Zbl
[13] Wallmann, C., Kleiter, G. D.: Probability propagation in generalized inference forms. Studia Logica. In press. doi: 10.1007/s11225-013-9513-4. | DOI
Cité par Sources :