Keywords: comparative probability; comparative plausibilities; hyperreal field; representability by nonstandard measures
@article{10_14736_kyb_2014_2_0189,
author = {Capotorti, Andrea and Coletti, Giulianella and Vantaggi, Barbara},
title = {Standard and nonstandard representability of positive uncertainty orderings},
journal = {Kybernetika},
pages = {189--215},
year = {2014},
volume = {50},
number = {2},
doi = {10.14736/kyb-2014-2-0189},
mrnumber = {3216990},
zbl = {1302.60010},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-2-0189/}
}
TY - JOUR AU - Capotorti, Andrea AU - Coletti, Giulianella AU - Vantaggi, Barbara TI - Standard and nonstandard representability of positive uncertainty orderings JO - Kybernetika PY - 2014 SP - 189 EP - 215 VL - 50 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-2-0189/ DO - 10.14736/kyb-2014-2-0189 LA - en ID - 10_14736_kyb_2014_2_0189 ER -
%0 Journal Article %A Capotorti, Andrea %A Coletti, Giulianella %A Vantaggi, Barbara %T Standard and nonstandard representability of positive uncertainty orderings %J Kybernetika %D 2014 %P 189-215 %V 50 %N 2 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-2-0189/ %R 10.14736/kyb-2014-2-0189 %G en %F 10_14736_kyb_2014_2_0189
Capotorti, Andrea; Coletti, Giulianella; Vantaggi, Barbara. Standard and nonstandard representability of positive uncertainty orderings. Kybernetika, Tome 50 (2014) no. 2, pp. 189-215. doi: 10.14736/kyb-2014-2-0189
[1] Yaghlane, B. Ben, Smets, P., Mellouli, K.: About conditional belief function independence. Lect. Notes in Comput. Sci. 2143 (2001), 340-349. | DOI | MR
[2] Bernardi, S., Coletti, G.: A Rational conditional utility model in a coherent framework. Lect. Notes in Comput. Sci. 2143 (2001), 108-119. | DOI | Zbl
[3] Blume, L., Brandenburger, A., Dekel, E.: Lexicographic probabilities and choice under uncertainty. Econometrica 59 (1991), 1, 61-79. | DOI | MR | Zbl
[4] Capotorti, A., Coletti, G., Vantaggi, B.: Non-additive ordinal relations representable by lower or upper probabilities. Kybernetika 34 (1998), 10, 79-90. | MR | Zbl
[5] Capotorti, A., Coletti, G., Vantaggi, B.: Preferences representable by a lower expectation: some characterizations. Theory and Decision 64 (2008), 119-146. | DOI | MR | Zbl
[6] Chateauneuf, A., Jaffray, J. Y.: Archimedean qualitative probabilities. J. Math. Psychol. 28 (1984), 191-204. | DOI | MR | Zbl
[7] Coletti, G.: Coherent qualitative probability. J. Math. Psychol. 34 (1990), 297-310. | DOI | MR | Zbl
[8] Coletti, G.: Coherent numerical and ordinal probabilistic assessments. IEEE Tras. Systems, Man, and Cybernetics 24 (1994), 12, 1747-1754. | DOI | MR
[9] Coletti, G., Mastroleo, M.: Conditional belief functions: a comparison among different definitions. In: Proc. 7th Workshop on Uncertainty Processing (WUPES), 2006.
[10] Coletti, G., Scozzafava, R.: Toward a general theory of conditional beliefs. Internat. J. of Intelligent Systems 21 (2006), 229-259. | DOI | Zbl
[11] Coletti, G., Scozzafava, R., Vantaggi, B.: Integrated likelihood in a finitely additive setting. Lect. Notes in Computer Science LNAI 5590 (2009), 554-565. | DOI | MR | Zbl
[12] Coletti, G., Vantaggi, B.: Representability of ordinal relations on a set of conditional events. Theory and Decision 60 (2006), 137-174. | DOI | MR | Zbl
[13] Coletti, G., Vantaggi, B.: A view on conditional measures through local representability of binary relations. Internat. J. Approximate Reasoning 60 (2006), 137-174. | MR | Zbl
[14] Coletti, G., Vantaggi, B.: Conditional not-additive measures and fuzzy sets. In: Proc. ISIPTA 2013, pp. 67-76.
[15] Finetti, B. de: Sul significato soggettivo delle probabilità. Fundam. Mat. 17 (1931), 293-329.
[16] Finetti, B. de: La prevision: Ses lois logiques, ses sources subjectives. Ann. Inst. Henri Poincaré, Section B 7 (1937), l-68. | Zbl
[17] Finetti, B. de: Teoria della Probabilità. Einaudi, Torino 1970 (Engl. transl.) Theory of Probability, Wiley and Sons, London 1974.
[18] Dempster, A. P.: Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Statist. 38 (1967), 325-339. | DOI | MR | Zbl
[19] Dempster, A. P.: A generalization of Bayesian inference. The Royal Stat. Soc. B 50 (1968), 205-247. | MR | Zbl
[20] Denoeux, T., Smets, P.: classification using belief functions: The relationship between the case-based and model-based approaches. IEEE Trans. on Systems, Man and Cybernetics B 36 (2006), 6, 1395-1406. | DOI
[21] Dubins, L. E.: Finitely additive conditional probabilities, conglomerability and disintegration. Ann. Probab. 3 (1975), 89-99. | DOI | MR
[22] Dubois, D., Fargier, H., Vantaggi, B.: An axiomatization of conditional possibilistic preference functionals. Lect. Notes LNAI 4724 (2007), 803-815. | Zbl
[23] Fenchel, W.: Convex Cones Sets and Functions. Lectures at Princeton University, Princeton 1951. | Zbl
[24] Fagin, R., Halpern, J. Y., Megido, N.: A logic for reasoning about probabilities. Information and Computation 87 (1990), 78-128. | DOI | MR
[25] Halpern, J .Y.: Lexicographic probability, conditional probability, and nonstandard probability. Games and Economic Behavior 68 (2010), 1, 155-179. | DOI | MR | Zbl
[26] Ghirardato, P.: Revisiting savage in a conditional world. Economic Theory 20 (2002), 83-92. | DOI | MR | Zbl
[27] Holzer, S.: On coherence and conditional prevision. Bollettino UMI, Serie VI-C IV (1985), 1, 441-460. | MR | Zbl
[28] Jaffray, J. Y.: Bayesian updating and belief functions. IEEE Trans. on Systems, Man, and Cybernetics 22 (1992), 1144-1152. | DOI | MR | Zbl
[29] Koopman, B. O.: The axioms and algebra of intuitive probability. Ann. Math. 41 (1940), 269-292. | DOI | MR | Zbl
[30] Kraft, C., Pratt, J., Seidenberg, A.: Intuitive probability on finite sets. Ann. Math. Statist. 30 (1959), 408-419. | DOI | MR | Zbl
[31] Krauss, P. H.: Representation of conditional probability measures on Boolean algebras. Acta Mathematica Academiae Sceintiarum Hungaricae 19 (1068), 3-4, 229-241. | MR | Zbl
[32] Lehmann, D.: Generalized qualitative probability: Savage revisited. In: Proc. UAI'96, pp. 381-388. | MR
[33] Narens, L.: Minimal conditions for additive conjoint measurement and qualitative probability. J. Math. Psychol. 11 (1974), 404-430. | DOI | MR | Zbl
[34] Paris, J.: A note on the Dutch Book method. In: Proc. Second International Symposium on Imprecise Probabilities and their Applications (G. De Cooman, T. Fine, and T. Seidenfeld, eds.), ISIPTA 2001, Shaker Publishing Company, Ithaca, pp. 301-306.
[35] Rényi, A.: On conditional probability spaces generated by a dimensionally ordered set of measures. Theor. Probab. Appl. 1 (1956), 61-71. | DOI | MR | Zbl
[36] Regazzini, E.: Finitely additive conditional probabilities. Rendiconti Sem. Mat. Fis. Milano 55 (1985), 69-89. | DOI | MR | Zbl
[37] Regoli, G.: Rational comparisons and numerical representation. In: Decision Theory and Decision Analysis: Trends and Challenges, Academic Press, New York 1994.
[38] Robinson, A.: Non-Standard Analysis. North Holland, Amsterdam 1966. | MR | Zbl
[39] Savage, L. J.: The Foundations of Statistics. Wiley, New York 1954. | MR | Zbl
[40] Shafer, G.: Allocations of probability. Ann. Probab. 7 (1979), 827-839. | DOI | MR | Zbl
[41] Vantaggi, B.: Incomplete preferences on conditional random quantities: representability by conditional previsions. Math. Soc. Sci. 60 (2010), 104-112. | DOI | MR | Zbl
[42] Walley, P.: Belief function representations of statistical evidence. Ann. Statist. 4 (1987), 1439-1465. | DOI | MR | Zbl
[43] Walley, P.: Statistical Reasoning with Imprecise Probabilities. Chapman and Hall, London 1991. | MR | Zbl
[44] Williams, P. M.: Notes on Conditional Previsions. Working Paper School of Mathematical and Physical Sciences, The University of Sussex, 1975. | MR | Zbl
[45] Wong, S. K. M., Tao, Y. Y., Bollmann, P., Burger, H. C.: Axiomatization of qualitative belief structure. IEEE Trans. Systems, Man, and Cybernet. 21 (1991), 726-734. | DOI | MR
Cité par Sources :