Standard and nonstandard representability of positive uncertainty orderings
Kybernetika, Tome 50 (2014) no. 2, pp. 189-215 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Axioms are given for positive comparative probabilities and plausibilities defined either on Boolean algebras or on arbitrary sets of events. These axioms allow to characterize binary relations representable by either standard or nonstandard measures (i. e. taking values either on the real field or on a hyperreal field). We also study relations between conditional events induced by preferences on conditional acts.
Axioms are given for positive comparative probabilities and plausibilities defined either on Boolean algebras or on arbitrary sets of events. These axioms allow to characterize binary relations representable by either standard or nonstandard measures (i. e. taking values either on the real field or on a hyperreal field). We also study relations between conditional events induced by preferences on conditional acts.
DOI : 10.14736/kyb-2014-2-0189
Classification : 06A06, 60A05, 60E15, 62C10, 91B08
Keywords: comparative probability; comparative plausibilities; hyperreal field; representability by nonstandard measures
@article{10_14736_kyb_2014_2_0189,
     author = {Capotorti, Andrea and Coletti, Giulianella and Vantaggi, Barbara},
     title = {Standard and nonstandard representability of positive uncertainty orderings},
     journal = {Kybernetika},
     pages = {189--215},
     year = {2014},
     volume = {50},
     number = {2},
     doi = {10.14736/kyb-2014-2-0189},
     mrnumber = {3216990},
     zbl = {1302.60010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-2-0189/}
}
TY  - JOUR
AU  - Capotorti, Andrea
AU  - Coletti, Giulianella
AU  - Vantaggi, Barbara
TI  - Standard and nonstandard representability of positive uncertainty orderings
JO  - Kybernetika
PY  - 2014
SP  - 189
EP  - 215
VL  - 50
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-2-0189/
DO  - 10.14736/kyb-2014-2-0189
LA  - en
ID  - 10_14736_kyb_2014_2_0189
ER  - 
%0 Journal Article
%A Capotorti, Andrea
%A Coletti, Giulianella
%A Vantaggi, Barbara
%T Standard and nonstandard representability of positive uncertainty orderings
%J Kybernetika
%D 2014
%P 189-215
%V 50
%N 2
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-2-0189/
%R 10.14736/kyb-2014-2-0189
%G en
%F 10_14736_kyb_2014_2_0189
Capotorti, Andrea; Coletti, Giulianella; Vantaggi, Barbara. Standard and nonstandard representability of positive uncertainty orderings. Kybernetika, Tome 50 (2014) no. 2, pp. 189-215. doi: 10.14736/kyb-2014-2-0189

[1] Yaghlane, B. Ben, Smets, P., Mellouli, K.: About conditional belief function independence. Lect. Notes in Comput. Sci. 2143 (2001), 340-349. | DOI | MR

[2] Bernardi, S., Coletti, G.: A Rational conditional utility model in a coherent framework. Lect. Notes in Comput. Sci. 2143 (2001), 108-119. | DOI | Zbl

[3] Blume, L., Brandenburger, A., Dekel, E.: Lexicographic probabilities and choice under uncertainty. Econometrica 59 (1991), 1, 61-79. | DOI | MR | Zbl

[4] Capotorti, A., Coletti, G., Vantaggi, B.: Non-additive ordinal relations representable by lower or upper probabilities. Kybernetika 34 (1998), 10, 79-90. | MR | Zbl

[5] Capotorti, A., Coletti, G., Vantaggi, B.: Preferences representable by a lower expectation: some characterizations. Theory and Decision 64 (2008), 119-146. | DOI | MR | Zbl

[6] Chateauneuf, A., Jaffray, J. Y.: Archimedean qualitative probabilities. J. Math. Psychol. 28 (1984), 191-204. | DOI | MR | Zbl

[7] Coletti, G.: Coherent qualitative probability. J. Math. Psychol. 34 (1990), 297-310. | DOI | MR | Zbl

[8] Coletti, G.: Coherent numerical and ordinal probabilistic assessments. IEEE Tras. Systems, Man, and Cybernetics 24 (1994), 12, 1747-1754. | DOI | MR

[9] Coletti, G., Mastroleo, M.: Conditional belief functions: a comparison among different definitions. In: Proc. 7th Workshop on Uncertainty Processing (WUPES), 2006.

[10] Coletti, G., Scozzafava, R.: Toward a general theory of conditional beliefs. Internat. J. of Intelligent Systems 21 (2006), 229-259. | DOI | Zbl

[11] Coletti, G., Scozzafava, R., Vantaggi, B.: Integrated likelihood in a finitely additive setting. Lect. Notes in Computer Science LNAI 5590 (2009), 554-565. | DOI | MR | Zbl

[12] Coletti, G., Vantaggi, B.: Representability of ordinal relations on a set of conditional events. Theory and Decision 60 (2006), 137-174. | DOI | MR | Zbl

[13] Coletti, G., Vantaggi, B.: A view on conditional measures through local representability of binary relations. Internat. J. Approximate Reasoning 60 (2006), 137-174. | MR | Zbl

[14] Coletti, G., Vantaggi, B.: Conditional not-additive measures and fuzzy sets. In: Proc. ISIPTA 2013, pp. 67-76.

[15] Finetti, B. de: Sul significato soggettivo delle probabilità. Fundam. Mat. 17 (1931), 293-329.

[16] Finetti, B. de: La prevision: Ses lois logiques, ses sources subjectives. Ann. Inst. Henri Poincaré, Section B 7 (1937), l-68. | Zbl

[17] Finetti, B. de: Teoria della Probabilità. Einaudi, Torino 1970 (Engl. transl.) Theory of Probability, Wiley and Sons, London 1974.

[18] Dempster, A. P.: Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Statist. 38 (1967), 325-339. | DOI | MR | Zbl

[19] Dempster, A. P.: A generalization of Bayesian inference. The Royal Stat. Soc. B 50 (1968), 205-247. | MR | Zbl

[20] Denoeux, T., Smets, P.: classification using belief functions: The relationship between the case-based and model-based approaches. IEEE Trans. on Systems, Man and Cybernetics B 36 (2006), 6, 1395-1406. | DOI

[21] Dubins, L. E.: Finitely additive conditional probabilities, conglomerability and disintegration. Ann. Probab. 3 (1975), 89-99. | DOI | MR

[22] Dubois, D., Fargier, H., Vantaggi, B.: An axiomatization of conditional possibilistic preference functionals. Lect. Notes LNAI 4724 (2007), 803-815. | Zbl

[23] Fenchel, W.: Convex Cones Sets and Functions. Lectures at Princeton University, Princeton 1951. | Zbl

[24] Fagin, R., Halpern, J. Y., Megido, N.: A logic for reasoning about probabilities. Information and Computation 87 (1990), 78-128. | DOI | MR

[25] Halpern, J .Y.: Lexicographic probability, conditional probability, and nonstandard probability. Games and Economic Behavior 68 (2010), 1, 155-179. | DOI | MR | Zbl

[26] Ghirardato, P.: Revisiting savage in a conditional world. Economic Theory 20 (2002), 83-92. | DOI | MR | Zbl

[27] Holzer, S.: On coherence and conditional prevision. Bollettino UMI, Serie VI-C IV (1985), 1, 441-460. | MR | Zbl

[28] Jaffray, J. Y.: Bayesian updating and belief functions. IEEE Trans. on Systems, Man, and Cybernetics 22 (1992), 1144-1152. | DOI | MR | Zbl

[29] Koopman, B. O.: The axioms and algebra of intuitive probability. Ann. Math. 41 (1940), 269-292. | DOI | MR | Zbl

[30] Kraft, C., Pratt, J., Seidenberg, A.: Intuitive probability on finite sets. Ann. Math. Statist. 30 (1959), 408-419. | DOI | MR | Zbl

[31] Krauss, P. H.: Representation of conditional probability measures on Boolean algebras. Acta Mathematica Academiae Sceintiarum Hungaricae 19 (1068), 3-4, 229-241. | MR | Zbl

[32] Lehmann, D.: Generalized qualitative probability: Savage revisited. In: Proc. UAI'96, pp. 381-388. | MR

[33] Narens, L.: Minimal conditions for additive conjoint measurement and qualitative probability. J. Math. Psychol. 11 (1974), 404-430. | DOI | MR | Zbl

[34] Paris, J.: A note on the Dutch Book method. In: Proc. Second International Symposium on Imprecise Probabilities and their Applications (G. De Cooman, T. Fine, and T. Seidenfeld, eds.), ISIPTA 2001, Shaker Publishing Company, Ithaca, pp. 301-306.

[35] Rényi, A.: On conditional probability spaces generated by a dimensionally ordered set of measures. Theor. Probab. Appl. 1 (1956), 61-71. | DOI | MR | Zbl

[36] Regazzini, E.: Finitely additive conditional probabilities. Rendiconti Sem. Mat. Fis. Milano 55 (1985), 69-89. | DOI | MR | Zbl

[37] Regoli, G.: Rational comparisons and numerical representation. In: Decision Theory and Decision Analysis: Trends and Challenges, Academic Press, New York 1994.

[38] Robinson, A.: Non-Standard Analysis. North Holland, Amsterdam 1966. | MR | Zbl

[39] Savage, L. J.: The Foundations of Statistics. Wiley, New York 1954. | MR | Zbl

[40] Shafer, G.: Allocations of probability. Ann. Probab. 7 (1979), 827-839. | DOI | MR | Zbl

[41] Vantaggi, B.: Incomplete preferences on conditional random quantities: representability by conditional previsions. Math. Soc. Sci. 60 (2010), 104-112. | DOI | MR | Zbl

[42] Walley, P.: Belief function representations of statistical evidence. Ann. Statist. 4 (1987), 1439-1465. | DOI | MR | Zbl

[43] Walley, P.: Statistical Reasoning with Imprecise Probabilities. Chapman and Hall, London 1991. | MR | Zbl

[44] Williams, P. M.: Notes on Conditional Previsions. Working Paper School of Mathematical and Physical Sciences, The University of Sussex, 1975. | MR | Zbl

[45] Wong, S. K. M., Tao, Y. Y., Bollmann, P., Burger, H. C.: Axiomatization of qualitative belief structure. IEEE Trans. Systems, Man, and Cybernet. 21 (1991), 726-734. | DOI | MR

Cité par Sources :