Basic bounds of Fréchet classes
Kybernetika, Tome 50 (2014) no. 1, pp. 95-108
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Algebraic bounds of Fréchet classes of copulas can be derived from the fundamental attributes of the associated copulas. A minimal system of algebraic bounds and related basic bounds can be defined using properties of pointed convex polyhedral cones and their relationship with non-negative solutions of systems of linear homogeneous Diophantine equations, largely studied in Combinatorics. The basic bounds are an algebraic improving of the Fréchet-Hoeffding bounds. We provide conditions of compatibility and propose tools for an explicit description of the basic bounds of simple Fréchet classes.
Algebraic bounds of Fréchet classes of copulas can be derived from the fundamental attributes of the associated copulas. A minimal system of algebraic bounds and related basic bounds can be defined using properties of pointed convex polyhedral cones and their relationship with non-negative solutions of systems of linear homogeneous Diophantine equations, largely studied in Combinatorics. The basic bounds are an algebraic improving of the Fréchet-Hoeffding bounds. We provide conditions of compatibility and propose tools for an explicit description of the basic bounds of simple Fréchet classes.
DOI : 10.14736/kyb-2014-1-0095
Classification : 11D75, 60E05, 62H20
Keywords: algebraic bound; basic bound; copula; Diophantine equation; Fréchet class; pointed convex polyhedral cone
@article{10_14736_kyb_2014_1_0095,
     author = {Sk\v{r}iv\'anek, Jaroslav},
     title = {Basic bounds of {Fr\'echet} classes},
     journal = {Kybernetika},
     pages = {95--108},
     year = {2014},
     volume = {50},
     number = {1},
     doi = {10.14736/kyb-2014-1-0095},
     mrnumber = {3195006},
     zbl = {1291.60034},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-1-0095/}
}
TY  - JOUR
AU  - Skřivánek, Jaroslav
TI  - Basic bounds of Fréchet classes
JO  - Kybernetika
PY  - 2014
SP  - 95
EP  - 108
VL  - 50
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-1-0095/
DO  - 10.14736/kyb-2014-1-0095
LA  - en
ID  - 10_14736_kyb_2014_1_0095
ER  - 
%0 Journal Article
%A Skřivánek, Jaroslav
%T Basic bounds of Fréchet classes
%J Kybernetika
%D 2014
%P 95-108
%V 50
%N 1
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-1-0095/
%R 10.14736/kyb-2014-1-0095
%G en
%F 10_14736_kyb_2014_1_0095
Skřivánek, Jaroslav. Basic bounds of Fréchet classes. Kybernetika, Tome 50 (2014) no. 1, pp. 95-108. doi: 10.14736/kyb-2014-1-0095

[1] Contejean, E., Devie, H.: An efficient incremental algorithm for solving system of linear Diophantine equations. Inform. and Comput. 113 (1994), 1, 143-172. | DOI | MR

[2] Embrechts, P., Lindskog, F., McNeil, A.: Modelling dependence with copulas and applications to risk management. In: Handbook of Heavy Tailed Distributions in Finance (S. T. Rachev, ed.), Elsevier/North-Holland 2003.

[3] Embrechts, P.: Copulas: A personal view. J. Risk and Insurance 76 (2009), 3, 639-650. | DOI

[4] Joe, H.: Multivariate Models and Dependence Concepts. Chapman and Hall, London 1997. | MR | Zbl

[5] Nelsen, R. B.: Introduction to Copulas. Second edition. Springer-Verlag, New York 2006. | MR

[6] Sebö, A.: Hilbert bases, Carathéodory's theorem and combinatorial optimization. In: Integer Programming and Combinatorial Optimization (R. Kannan and W. Pulleyblanck, eds.), University of Waterloo Press, Waterloo 1990, pp. 431-456.

[7] Skřivánek, J.: Bounds of general Fréchet classes. Kybernetika 48 (2012), 1, 130-143. | MR | Zbl

[8] Stanley, R. P.: Enumerative Combinatorics 1. Second edition. Cambridge University Press, New York 2012. | MR

[9] Tomás, A. P., Filgueiras, M.: An algorithm for solving systems of linear Diophantine equations in naturals. In: Progress in Artificial Intelligence (Coimbra) (E. Costa and A. Cardoso, eds.), Lecture Notes in Comput. Sci. 1323, Springer-Verlag, Berlin 1997, pp. 73-84. | MR | Zbl

Cité par Sources :