Convergence analysis for asymmetric Deffuant-Weisbuch model
Kybernetika, Tome 50 (2014) no. 1, pp. 32-45
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we investigate the convergence behavior of the asymmetric Deffuant-Weisbuch (DW) models during the opinion evolution. Based on the convergence of the asymmetric DW model that generalizes the conventional DW model, we first propose a new concept, the separation time, to study the transient behavior during the DW model's opinion evolution. Then we provide an upper bound of the expected separation time with the help of stochastic analysis. Finally, we show relations of the separation time with model parameters by simulations.
In this paper, we investigate the convergence behavior of the asymmetric Deffuant-Weisbuch (DW) models during the opinion evolution. Based on the convergence of the asymmetric DW model that generalizes the conventional DW model, we first propose a new concept, the separation time, to study the transient behavior during the DW model's opinion evolution. Then we provide an upper bound of the expected separation time with the help of stochastic analysis. Finally, we show relations of the separation time with model parameters by simulations.
DOI : 10.14736/kyb-2014-1-0032
Classification : 60G40, 60H30, 91C99, 91D10, 91D30
Keywords: opinion dynamics; asymmetric Deffuant–Weisbuch model; convergence; separation time
@article{10_14736_kyb_2014_1_0032,
     author = {Zhang, Jiangbo},
     title = {Convergence analysis for asymmetric {Deffuant-Weisbuch} model},
     journal = {Kybernetika},
     pages = {32--45},
     year = {2014},
     volume = {50},
     number = {1},
     doi = {10.14736/kyb-2014-1-0032},
     mrnumber = {3195003},
     zbl = {1291.91183},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-1-0032/}
}
TY  - JOUR
AU  - Zhang, Jiangbo
TI  - Convergence analysis for asymmetric Deffuant-Weisbuch model
JO  - Kybernetika
PY  - 2014
SP  - 32
EP  - 45
VL  - 50
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-1-0032/
DO  - 10.14736/kyb-2014-1-0032
LA  - en
ID  - 10_14736_kyb_2014_1_0032
ER  - 
%0 Journal Article
%A Zhang, Jiangbo
%T Convergence analysis for asymmetric Deffuant-Weisbuch model
%J Kybernetika
%D 2014
%P 32-45
%V 50
%N 1
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-1-0032/
%R 10.14736/kyb-2014-1-0032
%G en
%F 10_14736_kyb_2014_1_0032
Zhang, Jiangbo. Convergence analysis for asymmetric Deffuant-Weisbuch model. Kybernetika, Tome 50 (2014) no. 1, pp. 32-45. doi: 10.14736/kyb-2014-1-0032

[1] Boyd, S., Ghosh, A., Prabhakar, B., Shah, D.: Randomized gossip algorithms. Trans. Inform. Theory 52 (2006), 2508-2530. | DOI | MR | Zbl

[2] Chow, Y., Teicher, H.: Probability Theory: Independence Interchangeability Martingales. Second edition. Springer-Verlag, Heidelberg - Berlin 1978. | MR

[3] Deffuant, G., Neau, D., Amblard, F., Weisbuch, G.: Mixing beliefs among interacting agents. Adv. in Complex Systems 3 (2000), 87-98.

[4] Godsil, C., Royle, G.: Algebraic Graph Theory. Springer-Verlag, New York 2001. | MR | Zbl

[5] Groeber, P., Schweitzer, F., Press, K.: How groups can foster consensus: The case of local cultures. J. Artificial Societies and Social Simulations 12 (2009), 2/4.

[6] Harary, F.: A criterion for unanimity in French's theory of social power. In: Studies in Social Power, Ann Arbor 1959, pp. 168-182.

[7] Hegselmann, R., Krause, U.: Opinion dynamics and bounded confidence models. Analysis and Simulation. J. Artificial Societies and Social Simulations 5 (2002), 3.

[8] Hong, Y., Gao, L., Cheng, D., Hu, J.: Lyapuov-based approach to multi-agent systems with switching jointly connected interconnection. IEEE Trans. Automat. Control 52 (2007), 943-948. | DOI | MR

[9] Hu, J.: On robust consensus of multi-agent systems with communication delays. Kybernetika 45 (2009), 768-784. | MR | Zbl

[10] Jiang, L., Hua, D., Zhu, J., Wang, B., Zhou., T.: Opinion dynamics on directed small-world networks. The European Physical Journal B 65 (2008), 2, 251-255. | DOI

[11] Lorenz, J.: Continuous opinion dynamics under bounded confidence: A Survey. Internat. J. of Modern Physics C 18 (2007), 12, 1819-1838. | DOI | Zbl

[12] Lou, Y., Hong, Y.: Target containment control of multi-agent systems with random switching interconnection topologies. Automatica 48 (2012), 5, 879-885. | DOI | MR | Zbl

[13] Serge, M., Marisa, Z.: The group as a polarizer of attitudes. J. Personal. Soc. Psychology 12 (1969), 1, 125-135. | DOI

[14] Shi, G., Hong, Y.: Global target aggregation and state agreement of nonlinear multi-agent systems with switching topologies. Automatica 45 (2009), 1165-1175. | DOI | MR | Zbl

[15] Thunberg, J., Song, W., Hong, Y., Hu, X.: Distributed attitude synchronization using backstepping and sliding mode control. Journal of Control Theory and Applications 12 (2014), 1, 48-55. | MR

[16] Touri, B.: Product of Random Stochastic Matrices And Distributed Averaging. Ph.D. Thesis, Dept. of Industrial Engineering in the Graduate College of the University of Illinois at Urbana-Champaign, 2011. | Zbl

[17] Weisbuch, G., Deffuant, G., Amblard, F., Nadal, J.: Meet, discuss and segregate!. Complexity 7 (2002), 3, 55-63. | DOI

[18] Zhang, J., Hong, Y.: Opinion evolution analysis for short-range and long-range Deffuant-Weisbuch models. Physica A 392 (2013), 5289-5297. | DOI | MR

Cité par Sources :