Sweep coverage of discrete time multi-robot networks with general topologies
Kybernetika, Tome 50 (2014) no. 1, pp. 19-31
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper addresses a sweep coverage problem of multi-robot networks with general topologies. To deal with environmental uncertainties, we present discrete time sweep coverage algorithms to guarantee the complete coverage of the given region by sweeping in parallel with workload partition. Moreover, the error between actual coverage time and the optimal time is estimated with the aid of continuous time results. Finally, numerical simulation is conducted to verify the theoretical results.
This paper addresses a sweep coverage problem of multi-robot networks with general topologies. To deal with environmental uncertainties, we present discrete time sweep coverage algorithms to guarantee the complete coverage of the given region by sweeping in parallel with workload partition. Moreover, the error between actual coverage time and the optimal time is estimated with the aid of continuous time results. Finally, numerical simulation is conducted to verify the theoretical results.
DOI : 10.14736/kyb-2014-1-0019
Classification : 62A10, 68T40, 93A14, 93C85, 93E12
Keywords: sweep coverage; multi-robot networks; discrete time; general topologies
@article{10_14736_kyb_2014_1_0019,
     author = {Zhai, Chao},
     title = {Sweep coverage of discrete time multi-robot networks with general topologies},
     journal = {Kybernetika},
     pages = {19--31},
     year = {2014},
     volume = {50},
     number = {1},
     doi = {10.14736/kyb-2014-1-0019},
     mrnumber = {3195002},
     zbl = {1302.93225},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-1-0019/}
}
TY  - JOUR
AU  - Zhai, Chao
TI  - Sweep coverage of discrete time multi-robot networks with general topologies
JO  - Kybernetika
PY  - 2014
SP  - 19
EP  - 31
VL  - 50
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-1-0019/
DO  - 10.14736/kyb-2014-1-0019
LA  - en
ID  - 10_14736_kyb_2014_1_0019
ER  - 
%0 Journal Article
%A Zhai, Chao
%T Sweep coverage of discrete time multi-robot networks with general topologies
%J Kybernetika
%D 2014
%P 19-31
%V 50
%N 1
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-1-0019/
%R 10.14736/kyb-2014-1-0019
%G en
%F 10_14736_kyb_2014_1_0019
Zhai, Chao. Sweep coverage of discrete time multi-robot networks with general topologies. Kybernetika, Tome 50 (2014) no. 1, pp. 19-31. doi: 10.14736/kyb-2014-1-0019

[1] Cortés, J., Martínez, S., Karatas, T., Bullo, F.: Coverage control for mobile sensing network. IEEE Trans. Robotics Automat. 20 (2004), 243-255. | DOI

[2] Cheng, T. M., Savkin, A. V.: Decentralized coordinated control of a vehicle network for deployment in sweep coverage. In: Proc. IEEE Internat. Conference on Control and Automation, Christchurch 2009.

[3] Du, Q., Faber, V., Gunzburger, M.: Centroidal Voronoi tesseuations: applications and algorithms. SIAM Rev. 41 (1999), 637-676. | DOI | MR

[4] Gage, D. W.: Command control for many-robot systems. In: Proc. 19th Annual AUVS Teachnical Symposium, Huntsville 1992.

[5] Gear, C. W.: Numerical Initial Value Problems for Ordinary Differential Equations. Prentice-Hall, Englewood Cliffs, New Jersey 1971. | MR

[6] Hong, Y., Hu, J., Gao, L.: Tracking control for multi-agent consensus with an active leader and variable topology. Automatica 42 (2006), 1177-1182. | DOI | MR | Zbl

[7] Horn, R. A., Johnson, C. R.: Matrix Analysis. Cambridge University Press, Cambridge 1987. | Zbl

[8] Howard, A., Parker, L. E., Sukhatme, G.: Experiments with a large heterogeneous mobile robot team: Exploration, mapping, deployment and detection. Internat. J. Robotics Research 25 (2006), 431-447. | DOI

[9] Hu, J., Feng, G.: Distributed tracking control of leader-follower multi-agent systems under noisy measurement. Automatica 46 (2010), 1382-1387. | DOI | MR | Zbl

[10] Ren, W., Beard, R.: Distributed Consensus in Multi-vehicle Cooperative Control. Springer-Verlag, London 2008. | Zbl

[11] Renzaglia, A., Doitsidis, L., Martinelli, A., Kosmatopoulos, E.: Adaptive-based distributed cooperative multi-robot coverage. In: Proc. American Control Conference, San Francisco 2011.

[12] Schwager, M., Rus, D., Slotine, J. J. E.: Decentralized, adaptive control for coverage with networked robots. Internat. J. Robotics Research 28 (2009), 357-375. | DOI

[13] Shi, G., Hong, Y.: Global target aggregation and state agreement of nonlinear multi-agent systems with switching topologies. Automatica 45 (2009), 1165-1175. | DOI | MR | Zbl

[14] Shi, G., Hong, Y., Johansson, K.: Connectivity and set tracking of multi-agent systems guided by multiple moving leaders. IEEE Trans. Automat. Control 57 (2012), 663-676. | DOI | MR

[15] Wang, X., Han, F.: Robust coordination control of switching multi-agent systems via output regulation approach. Kybernetika 47 (2012), 755-772. | MR | Zbl

[16] Zhai, C., Hong, Y.: Decentralized sweep coverage algorithm for multi-agent systems with workload uncertainties. Automatica 49 (2013), 2154-2159. | DOI | MR

[17] Zhang, H., Zhai, C., Chen, Z.: A general alignment repulsion algorithm for flocking of multi-agent systems. IEEE Trans. Autom. Control 56 (2011), 430-435. | DOI | MR

Cité par Sources :